A model with many small shifts for estimating species-specific diversification rates

Abstract

Understanding how and why diversification rates vary through time and space and across species groups is key to understanding the emergence of today’s biodiversity. Phylogenetic approaches aimed at identifying variations in diversification rates during the evolutionary history of clades have focused on exceptional shifts subtending evolutionary radiations. While such shifts have undoubtedly affected the history of life, identifying smaller but more frequent changes is important as well. We developed ClaDS—a new Bayesian approach for estimating branch-specific diversification rates on a phylogeny that relies on a model with changes in diversification rates at each speciation event. We show, using Monte Carlo simulations, that the approach performs well at inferring both small and large changes in diversification. Applying our approach to bird phylogenies covering the entire avian radiation, we find that diversification rates are remarkably heterogeneous within evolutionarily restricted species groups. Some groups such as Accipitridae (hawks and allies) cover almost the full range of speciation rates found across the entire bird radiation. As much as 76% of the variation in branch-specific rates across this radiation is due to intraclade variation, suggesting that a large part of the variation in diversification rates is due to many small, rather than few large, shifts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Illustration of the ClaDS model.
Fig. 2: Recovery of ClaDS parameters.
Fig. 3: ClaDS performs well in recovering branch-specific speciation rates.
Fig. 4: Patterns of diversification across 42 bird clades.

Data availability

The simulated phylogenies used to test the method are available at https://github.com/OdileMaliet/ClaDS/tree/master/Simulations in a file named trees.zip. All of the empirical data used for the analysis were obtained from the Jetz et al.4 study, and are available from https://www.nature.com/articles/nature11631.

Code availability

The R functions used to simulate and fit the model are available in the RPANDA R package. All of the codes used to test our method are available from the GitHub repository at https://github.com/OdileMaliet/ClaDS.git.

References

  1. 1.

    Alfaro, M. E. et al. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Natl Acad. Sci. USA 106, 13410–13414 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    Chan, K. M. & Moore, B. R. SymmeTREE: whole-tree analysis of differential diversification rates. Bioinformatics 21, 1709–1710 (2004).

    Article  Google Scholar 

  3. 3.

    Morlon, H., Parsons, T. L. & Plotkin, J. B. Reconciling molecular phylogenies with the fossil record. Proc. Natl Acad. Sci. USA 108, 16327–16332 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    Jetz, W., Thomas, G., Joy, J., Hartmann, K. & Mooers, A. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).

    Article  Google Scholar 

  6. 6.

    Barido-Sottani, J., Vaughan, T. G. & Stadler, T. A multi-state birth–death model for Bayesian inference of lineage-specific birth and death rates. Preprint at https://www.biorxiv.org/content/10.1101/440982v1 (2018).

  7. 7.

    Sanderson, M. J. & Wojciechowski, M. F. Diversification rates in a temperate legume clade: are there so many species of Astragalus (Fabaceae)? Am. J. Bot. 83, 1488–1502 (1996).

    Article  Google Scholar 

  8. 8.

    Miller, A. H. In Ornithologie als Biologische Wissenschaft (eds Mayr, E. and Schüz, E.) 84–88 (Carl Winter, 1949).

  9. 9.

    Hunter, J. P. Key innovations and the ecology of macroevolution. Trends Ecol. Evol. 13, 31–36 (1998).

    CAS  Article  Google Scholar 

  10. 10.

    Benton, M. J. The Red Queen and the court jester: species diversity and the role of biotic and abiotic factors through time. Science 323, 728–732 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    Goldberg, E. E. et al. Species selection maintains self-incompatibility. Science 330, 493–495 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    Onstein, R. E. et al. Frugivory-related traits promote speciation of tropical palms. Nat. Ecol. Evol. 1, 1903–1911 (2017).

    Article  Google Scholar 

  13. 13.

    FitzJohn, R. G. Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3, 1084–1092 (2012).

    Article  Google Scholar 

  14. 14.

    Title, P. O. & Rabosky, D. L. Tip rates, phylogenies, and diversification: what are we estimating, and how good are the estimates? Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13153 (2018).

    Article  Google Scholar 

  15. 15.

    Emerson, B. C. & Kolm, N. Species diversity can drive speciation. Nature 434, 1015–1017 (2005).

    CAS  Article  Google Scholar 

  16. 16.

    Rabosky, D. L. & Lovette, I. J. Explosive evolutionary radiations: decreasing speciation or increasing extinction through time? Evolution 62, 1866–1875 (2008).

    Article  Google Scholar 

  17. 17.

    Phillimore, A. B. & Price, T. D. Density-dependent cladogenesis in birds. PLoS Biol. 6, e71 (2008).

    Article  Google Scholar 

  18. 18.

    Moen, D. & Morlon, H. Why does diversification slow down? Trends Ecol. Evol. 29, 190–197 (2014).

    Article  Google Scholar 

  19. 19.

    Rosenzweig, M. L. Species diversity gradients: we know more and less than we thought. J. Mammal. 73, 715–730 (1992).

    Article  Google Scholar 

  20. 20.

    Rabosky, D. L. & Huang, H. A robust semi-parametric test for detecting trait-dependent diversification. Syst. Biol. 65, 181–193 (2015).

    Article  Google Scholar 

  21. 21.

    May, M. R. & Moore, B. R. How well can we detect lineage-specific diversification-rate shifts? A simulation study of sequential AIC methods. Syst. Biol. 65, 1076–1084 (2016).

    Article  Google Scholar 

  22. 22.

    Moore, B. R., Höhna, S., May, M. R., Rannala, B. & Huelsenbeck, J. P. Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. Proc. Natl Acad. Sci. USA 113, 9569–9574 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Rabosky, D. L., Mitchell, J. S. & Chang, J. Is BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification models. Syst. Biol. 66, 477–498 (2017).

    Article  Google Scholar 

  24. 24.

    Rabosky, D. L. How to make any method “fail”: BAMM at the kangaroo court of false equivalency. Preprint at https://arxiv.org/abs/1711.03253 (2017).

  25. 25.

    Rabosky, D. L. Extinction rates should not be estimated from molecular phylogenies. Evolution 64, 1816–1824 (2010).

    Article  Google Scholar 

  26. 26.

    Mitchell, J. S. & Rabosky, D. L. Bayesian model selection with BAMM: effects of the model prior on the inferred number of diversification shifts. Methods Ecol. Evol. 8, 37–46 (2017).

    Article  Google Scholar 

  27. 27.

    Freckleton, R. P., Phillimore, A. B. & Pagel, M. Relating traits to diversification: a simple test. Am. Nat. 172, 102–115 (2008).

    Article  Google Scholar 

  28. 28.

    Rabosky, D. L. & Goldberg, E. E. FiSSE: a simple nonparametric test for the effects of a binary character on lineage diversification rates. Evolution 71, 1432–1442 (2017).

    Article  Google Scholar 

  29. 29.

    Harvey, M. G. & Rabosky, D. L. Continuous traits and speciation rates: alternatives to state-dependent diversification models. Methods Ecol. Evol. 9, 984–993 (2017).

    Article  Google Scholar 

  30. 30.

    Bromham, L., Hua, X. & Cardillo, M. Detecting macroevolutionary self-destruction from phylogenies. Syst. Biol. 65, 109–127 (2015).

    Article  Google Scholar 

  31. 31.

    Hua, X. & Bromham, L. Phylometrics: an R package for detecting macroevolutionary patterns, using phylogenetic metrics and backward tree simulation. Methods Ecol. Evol. 7, 806–810 (2016).

    Article  Google Scholar 

  32. 32.

    Maddison, W. P., Midford, P. E. & Otto, S. P. Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007).

    Article  Google Scholar 

  33. 33.

    Redding, D. W. & Mooers, A. Ø. Incorporating evolutionary measures into conservation prioritization. Conserv. Biol. 20, 1670–1678 (2006).

    Article  Google Scholar 

  34. 34.

    Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).

    Article  Google Scholar 

  35. 35.

    Nee, S., May, R. M. & Harvey, P. H. The reconstructed evolutionary process. Phil. Trans. R. Soc. Lond. B 344, 305–311 (1994).

    CAS  Article  Google Scholar 

  36. 36.

    Stadler, T. Mammalian phylogeny reveals recent diversification rate shifts. Proc. Natl Acad. Sci. USA 108, 6187–6192 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    Condamine, F. L., Rolland, J. & Morlon, H. Macroevolutionary perspectives to environmental change. Ecol. Lett. 16, 72–85 (2013).

    Article  Google Scholar 

  38. 38.

    Lewitus, E. & Morlon, H. Detecting environment-dependent diversification from phylogenies: a simulation study and some empirical illustrations. Syst. Biol. 67, 576–593 (2017).

    Article  Google Scholar 

  39. 39.

    Hedges, S. B., Marin, J., Suleski, M., Paymer, M. & Kumar, S. Tree of life reveals clock-like speciation and diversification. Mol. Biol. Evol. 32, 835–845 (2015).

    CAS  Article  Google Scholar 

  40. 40.

    Thorne, J. L., Kishino, H. & Painter, I. S. Estimating the rate of evolution of the rate of molecular evolution. Mol. Biol. Evol. 15, 1647–1657 (1998).

    CAS  Article  Google Scholar 

  41. 41.

    Huelsenbeck, J. P., Larget, B. & Swofford, D. A compound Poisson process for relaxing the molecular clock. Genetics 154, 1879–1892 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Lartillot, N., Phillips, M. J. & Ronquist, F. A mixed relaxed clock model. Phil. Trans. R. Soc. B 371, 20150132 (2016).

    Article  Google Scholar 

  43. 43.

    Morlon, H. et al. RPANDA: an R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 7, 589–597 (2016).

    Article  Google Scholar 

  44. 44.

    Yang, Z. & Rodríguez, C. E. Searching for efficient Markov chain Monte Carlo proposal kernels. Proc. Natl Acad. Sci. USA 110, 19307–19312 (2013).

    CAS  Article  Google Scholar 

  45. 45.

    Gelman, A et al. Bayesian Data Analysis (CRC press, 2014).

  46. 46.

    Ter Braak, C. J. & Vrugt, J. A. Differential evolution Markov chain with snooker updater and fewer chains. Stat. Comput. 18, 435–446 (2008).

    Article  Google Scholar 

  47. 47.

    Grafen, A. The phylogenetic regression. Phil. Trans. R. Soc. Lond. B 326, 119–157 (1989).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to L. Arístide, J. Clavel, J. Drury, C. Fruciano, S. Lambert, E. Lewitus, M. Manceau, O. Missa, B. Perez, A. Catarina Silva and G. Sommeria-Klein for their helpful comments on an earlier version of this manuscript. This work was supported by an AMX grant (from École Polytechique) and the LabEx MemoLife (to O.M.), PROCOPE Mobility Grant 57134817 (to F.H. and H.M.) and the European Research Council (ERC 616419-PANDA to H.M.).

Author information

Affiliations

Authors

Contributions

O.M., F.H. and H.M. designed the study and performed research. O.M. contributed new analytical tools and analysed the data. O.M., F.H. and H.M. wrote the paper.

Corresponding author

Correspondence to Odile Maliet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Results and Figs. 1–34

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maliet, O., Hartig, F. & Morlon, H. A model with many small shifts for estimating species-specific diversification rates. Nat Ecol Evol 3, 1086–1092 (2019). https://doi.org/10.1038/s41559-019-0908-0

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing