Enforcement is central to the evolution of cooperation

Matters Arising to this article was published on 10 February 2020

This article has been updated

Abstract

Cooperation occurs at all levels of life, from genomes, complex cells and multicellular organisms to societies and mutualisms between species. A major question for evolutionary biology is what these diverse systems have in common. Here, we review the full breadth of cooperative systems and find that they frequently rely on enforcement mechanisms that suppress selfish behaviour. We discuss many examples, including the suppression of transposable elements, uniparental inheritance of mitochondria and plastids, anti-cancer mechanisms, reciprocation and punishment in humans and other vertebrates, policing in eusocial insects and partner choice in mutualisms between species. To address a lack of accompanying theory, we develop a series of evolutionary models that show that the enforcement of cooperation is widely predicted. We argue that enforcement is an underappreciated, and often critical, ingredient for cooperation across all scales of biological organization.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The importance of enforcement is revealed by its absence at all levels of biological organization.

Jon Ågren (b); Andrea Case (c); Dave Watts/Alamy Stock Photo (d); Tom Wenseleers (e); Christian Ziegler and Charlotte Jandér (f); Nature Picture Library/Alamy Stock Photo (g)

Fig. 2: Models of enforcement across the levels of biological organization.

Lena London, used under creative commons license (Meerkats in d)

Fig. 3: The evolution of enforcement is predicted to reduce selfishness and promote cooperation across all levels of biological organization.

Change history

  • 05 July 2019

    Owing to a technical error, for a short period of time the Published Online date displaying for the HTML version of this Review Article was incorrect as 28 June 2019; it should have read 24 June 2019. This has now been corrected. The PDF was unaffected.

References

  1. 1.

    Maynard Smith, J. & Szathmáry, E. The Major Transitions in Evolution (W.H. Freeman Spektrum, 1995).

  2. 2.

    Michod, R.E. Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality (Princeton University Press, 1999).

  3. 3.

    Bourke, A.F.G. Principles of Social Evolution (Oxford University Press, 2011).

  4. 4.

    West, S. A., Fisher, R. M., Gardner, A. & Kiers, E. T. Major evolutionary transitions in individuality. Proc. Natl Acad. Sci. USA 112, 10112–10119 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16 (1964).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Hamilton, W. D. The genetical evolution of social behaviour. II. J. Theor. Biol. 7, 17–52 (1964).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Foster, K. R. A defense of sociobiology. Cold Spring Harb. Symp. Quant. Biol. 74, 403–418 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Boomsma, J. J. & Gawne, R. Superorganismality and caste differentiation as points of no return: how the major evolutionary transitions were lost in translation. Biol. Rev. Camb. Philos. Soc. 93, 28–54 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Queller, D. C. Cooperators since life began. Q. Rev. Biol. 72, 184–188 (1997).

    Article  Google Scholar 

  10. 10.

    Wheeler, W. M. The ant-colony as an organism. J. Morphol. 22, 307–325 (1911).

    Article  Google Scholar 

  11. 11.

    El Mouden, C., West, S. A. & Gardner, A. The enforcement of cooperation by policing. Evolution 64, 2139–2152 (2010).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Foster, K. R. & Wenseleers, T. A general model for the evolution of mutualisms. J. Evol. Biol. 19, 1283–1293 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Szathmáry, E. Transitions and social evolution. Philosophy & Theory in Biology 4 https://doi.org/10.3998/ptb.6959004.0004.002 (2012).

  14. 14.

    Frank, S. A. Perspective: repression of competition and the evolution of cooperation. Evolution 57, 693–705 (2003).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Hamilton, W. D. Extraordinary sex ratios. Science 156, 477–488 (1967).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Leigh, E. G. How does selection reconcile individual advantage with the good of the group? Proc. Natl Acad. Sci. USA 74, 4542–4546 (1977).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Leigh, E.G. Adaptation and Diversity: Natural History and the Mathematics of Evolution 1st edn. (Freeman, 1971).

  18. 18.

    Alexander, R.D. The Biology of Moral Systems (Transaction Publishers, 1987).

  19. 19.

    Mulder, R. A. & Langmore, N. E. Dominant males punish helpers for temporary defection in superb fairy-wrens. Anim. Behav. 45, 830–833 (1993).

    Article  Google Scholar 

  20. 20.

    Ratnieks, F. L. W. & Visscher, P. K. Worker policing in the honeybee. Nature 342, 796–797 (1989).

    Article  Google Scholar 

  21. 21.

    Ågren, J. A. Evolutionary transitions in individuality: insights from transposable elements. Trends Ecol. Evol. 29, 90–96 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Friedli, M. & Trono, D. The developmental control of transposable elements and the evolution of higher species. Annu. Rev. Cell Dev. Biol. 31, 429–451 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Blackstone, N. W. Why did eukaryotes evolve only once? Genetic and energetic aspects of conflict and conflict mediation. Philos. Trans. R. Soc. B 368, 20120266 (2013).

    Article  CAS  Google Scholar 

  24. 24.

    Radzvilavicius, A. L. & Blackstone, N. W. Conflict and cooperation in eukaryogenesis: implications for the timing of endosymbiosis and the evolution of sex. J. R. Soc. Interface 12, 20150584 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Havird, J. C. et al. Selfish mitonuclear conflict. Curr. Biol. 29, PR496–R511 (2019).

    Article  CAS  Google Scholar 

  26. 26.

    Ostrowski, E. A. Enforcing cooperation in the social amoebae. Curr. Biol. 29, PR474–R484 (2019).

    Article  CAS  Google Scholar 

  27. 27.

    Nunney, L. The real war on cancer: the evolutionary dynamics of cancer suppression. Evol. Appl. 6, 11–19 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Aktipis, C. A. et al. Cancer across the tree of life: cooperation and cheating in multicellularity. Philos. Trans. R. Soc. B 370, 20140219 (2015).

    Article  Google Scholar 

  29. 29.

    Singh, M. & Boomsma, J. J. Policing and punishment across the domains of social evolution. Oikos 124, 971–982 (2015).

    Article  Google Scholar 

  30. 30.

    Griffin, A. Policing. Curr. Biol. 29, PR431–R432 (2019).

    Article  CAS  Google Scholar 

  31. 31.

    Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Higgs, P. G. & Lehman, N. The RNA World: molecular cooperation at the origins of life. Nat. Rev. Genet. 16, 7–17 (2015).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Dawkins, R. The Selfish Gene (Oxford University Press, 1976).

  34. 34.

    Herre, E. A., Knowlton, N., Mueller, U. G. & Rehner, S. A. The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol. Evol. 14, 49–53 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Iranzo, J., Puigbo, P., Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Inevitability of genetic parasites. Genome Biol. Evol. 26, 2856–2869 (2016).

    Article  CAS  Google Scholar 

  36. 36.

    Burt, A. & Trivers, R. Genes in Conflict: The Biology of Selfish Genetic Elements (Belknap Press of Harvard University Press, 2006).

  37. 37.

    Hickey, D. A. Selfish DNA — a sexually transmitted nuclear parasite. Genetics 101, 519–531 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Hurst, L. D., Atlan, A. & Bengtsson, B. O. Genetic conflicts. Q. Rev. Biol. 71, 317–364 (1996).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Wagner, A. Periodic extinctions of transposable elements in bacterial lineages: evidence from intragenomic variation in multiple genomes. Mol. Biol. Evol. 23, 723–733 (2006).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Kelleher, E. S. Reexamining the P-element invasion of Drosophila melanogaster through the lens of piRNA silencing. Genetics 203, 1513–1531 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Lu, J. & Clark, A. G. Population dynamics of PIWI-interacting RNAs (piRNAs) and their targets in Drosophila. Genome Res. 20, 212–227 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Kelleher, E. S. & Barbash, D. A. Analysis of piRNA-mediated silencing of active TEs in Drosophila melanogaster suggests limits on the evolution of host genome defense. Mol. Biol. Evol. 30, 1816–1829 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Hill, T., Schlotterer, C. & Betancourt, A. J. Hybrid dysgenesis in Drosophila simulans associated with a rapid invasion of the P-element. PLoS Genet. 12, e1005920 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Blumenstiel, J. P. Evolutionary dynamics of transposable elements in a small RNA world. Trends Genet. 27, 23–31 (2011).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Ågren, J. A. & Wright, S. I. Selfish genetic elements and plant genome size evolution. Trends Plant Sci. 20, 195–196 (2015).

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Willing, E. M. et al. Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nat. Plants 1, 14023 (2015).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Ågren, J. A. & Clark, A. G. Selfish genetic elements. PLoS Genet. 14, e1007700 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. 48.

    Lindholm, A. K. et al. The ecology and evolutionary dynamics of meiotic drive. Trends Ecol. Evol. 31, 315–326 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Burt, A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc. R. Soc. Lond. B 270, 921–928 (2003).

    CAS  Article  Google Scholar 

  50. 50.

    Unckless, R. L., Clark, A. G. & Messer, P. W. Evolution of resistance against CRISPR/Cas9 gene drive. Genetics 205, 827–841 (2017).

    PubMed  Article  Google Scholar 

  51. 51.

    Champer, J. et al. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. PLoS Genet. 13, e1006796 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52.

    Dyall, S. D., Brown, M. T. & Johnson, P. J. Ancient invasions: from endosymbionts to organelles. Science 304, 253–257 (2004).

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Archibald, J. M. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25, R911–R921 (2015).

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Martin, W. et al. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc. Natl Acad. Sci. USA 99, 12246–12251 (2002).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Cosmides, L. M. & Tooby, J. Cytoplasmic inheritance and intragenomic conflict. J. Theor. Biol. 89, 83–129 (1981).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Eberhard, W. G. Evolutionary consequences of intracellular organelle competition. Q. Rev. Biol. 55, 231–249 (1980).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Hastings, I. M. Population genetic aspects of deleterious cytoplasmic genomes and their effect on the evolution of sexual reproduction. Genet. Res. 59, 215–225 (1992).

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Christie, J. R., Schaerf, T. M. & Beekman, M. Selection against heteroplasmy explains the evolution of uniparental inheritance of mitochondria. PLoS Genet. 11, e1005112 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. 59.

    Sato, M. & Sato, K. Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochim. Biophys. Acta 1833, 1979–1984 (2013).

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Frank, S. A. & Hurst, L. D. Mitochondria and male disease. Nature 383, 224 (1996).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Touzet, P. & Meyer, E. H. Cytoplasmic male sterility and mitochondrial metabolism in plants. Mitochondrion 19, 166–171 (2014).

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Fishman, L. & Willis, J. H. A cytonuclear incompatibility causes anther sterility in Mimulus hybrids. Evolution 60, 1372–1381 (2006).

    PubMed  Article  Google Scholar 

  63. 63.

    Case, A. L., Finseth, F. R., Barr, C. M. & Fishman, L. Selfish evolution of cytonuclear hybrid incompatibility in Mimulus. Proc. R. Soc. Lond. B 283, 20161493 (2016).

    Article  CAS  Google Scholar 

  64. 64.

    Ågren, J.A., Munasinghe, M. & Clark, A.G. Sexual conflict through mother’s curse and father’s curse. Theor. Popul. Biol. https://doi.org/10.1016/j.tpb.2018.12.007 (2019).

    PubMed  Article  Google Scholar 

  65. 65.

    Fenn, K. & Blaxter, M. Wolbachia genomes: revealing the biology of parasitism and mutualism. Trends Parasitol. 22, 60–65 (2006).

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Dyson, E. A. & Hurst, G. D. D. Persistence of an extreme sex-ratio bias in a natural population. Proc. Natl Acad. Sci. USA 101, 6520–6523 (2004).

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Charlat, S. et al. Extraordinary flux in sex ratio. Science 317, 214 (2007).

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016).

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027 (2004).

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Nadell, C. D., Foster, K. R. & Xavier, J. B. Emergence of spatial structure in cell groups and the evolution of cooperation. PLOS Comput. Biol. 6, e1000716 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. 71.

    Harrison, F. & Buckling, A. Hypermutability impedes cooperation in pathogenic bacteria. Curr. Biol. 15, 1968–1971 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Foster, K. R., Shaulsky, G., Strassmann, J. E., Queller, D. C. & Thompson, C. R. L. Pleiotropy as a mechanism to stabilize cooperation. Nature 431, 693–696 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Foster, K. R. The sociobiology of molecular systems. Nat. Rev. Genet. 12, 193–203 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Niklas, K. J. The evolutionary-developmental origins of multicellularity. Am. J. Bot. 101, 6–25 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Rainey, P. B. & De Monte, S. Resolving conflicts during the evolutionary transition to multicellular life. Annu. Rev. Ecol. Evol. Syst. 45, 599–620 (2014).

    Article  Google Scholar 

  76. 76.

    Fisher, R. M., Cornwallis, C. K. & West, S. A. Group formation, relatedness, and the evolution of multicellularity. Curr. Biol. 23, 1120–1125 (2013).

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    DeGregori, J. Challenging the axiom: does the occurrence of oncogenic mutations truly limit cancer development with age? Oncogene 32, 1869 (2013).

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Michod, R. E. & Roze, D. Cooperation and conflict in the evolution of multicellularity. Hered. (Edinb.) 86, 1–7 (2001).

    CAS  Article  Google Scholar 

  79. 79.

    Evan, G. I. & Vousden, K. H. Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348 (2001).

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Abegglen, L. M. et al. Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans. J. Am. Med. Assoc. 314, 1850–1860 (2015).

    CAS  Article  Google Scholar 

  81. 81.

    Sulak, M. et al. TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. eLife 5, e11994 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Hogan, C. et al. Characterization of the interface between normal and transformed epithelial cells. Nat. Cell Biol. 11, 460 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Feng, M. et al. Programmed cell removal by calreticulin in tissue homeostasis and cancer. Nat. Commun. 9, 3194 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  85. 85.

    Morris, K., Austin, J. J. & Belov, K. Low major histocompatibility complex diversity in the Tasmanian devil predates European settlement and may explain susceptibility to disease epidemics. Biol. Lett. 9, 20120900 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Epstein, B. et al. Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Nat. Commun. 7, 12684 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Doonan, J. H. & Sablowski, R. Walls around tumours — why plants do not develop cancer. Nat. Rev. Cancer 10, 794–802 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Biedermann, S. et al. The retinoblastoma homolog RBR1 mediates localization of the repair protein RAD51 to DNA lesions in Arabidopsis. EMBO J. 36, 1279–1297 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Cornwallis, C. K., West, S. A. & Griffin, A. S. Routes to indirect fitness in cooperatively breeding vertebrates: kin discrimination and limited dispersal. J. Evol. Biol. 22, 2445–2457 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Clutton-Brock, T. H. & Parker, G. A. Punishment in animal societies. Nature 373, 209–216 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Riehl, C. & Frederickson, M. E. Cheating and punishment in cooperative animal societies. Philos. Trans. R. Soc. Lond. B 371, 20150090 (2016).

    Article  Google Scholar 

  92. 92.

    Cant, M. A., Nichols, H. J., Johnstone, R. A. & Hodge, S. J. Policing of reproduction by hidden threats in a cooperative mammal. Proc. Natl Acad. Sci. USA 111, 326–330 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Lehmann, L., Foster, K. R., Borenstein, E. & Feldman, M. W. Social and individual learning of helping in humans and other species. Trends Ecol. Evol. 23, 664–671 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    West, S. A., El Mouden, C. & Gardner, A. Sixteen common misconceptions about the evolution of cooperation in humans. Evol. Hum. Behav. 32, 231–262 (2011).

    Article  Google Scholar 

  95. 95.

    Whitehouse, H., McQuinn, B., Buhrmester, M. & Swann, W. B. Jr. Brothers in arms: Libyan revolutionaries bond like family. Proc. Natl Acad. Sci. USA 111, 17783–17785 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96.

    Hammerstein, P. & Noe, R. Biological trade and markets. Philos. Trans. R. Soc. B 371, 20150101 (2016).

    Article  Google Scholar 

  97. 97.

    Noë, R. & Hammerstein, P. Biological markets: supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behav. Ecol. Sociobiol. 35, 1–11 (1994).

    Article  Google Scholar 

  98. 98.

    Nesse, R. M. Runaway social selection for displays of partner value and altruism. Biol. Theory 2, 143–155 (2007).

    Article  Google Scholar 

  99. 99.

    Trivers, R. L. Evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971).

    Article  Google Scholar 

  100. 100.

    Axelrod, R. & Hamilton, W. D. The evolution of cooperation. Science 211, 1390–1396 (1981).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101.

    Nowak, M. A. & Sigmund, K. Evolution of indirect reciprocity by image scoring. Nature 393, 573–577 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102.

    Barclay, P. & Raihani, N. Partner choice versus punishment in human Prisoner’s Dilemmas. Evol. Hum. Behav. 37, 263–271 (2016).

    Article  Google Scholar 

  103. 103.

    Gardner, A. & West, S. A. Cooperation and punishment, especially in humans. Am. Nat. 164, 753–764 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  104. 104.

    Úbeda, F. & Duéñez‐Guzmán, E. A. Power and corruption. Evolution 65, 1127–1139 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  105. 105.

    Raihani, N. J. & Bshary, R. The reputation of punishers. Trends Ecol. Evol. 30, 98–103 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  106. 106.

    Hughes, W. O., Oldroyd, B. P., Beekman, M. & Ratnieks, F. L. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. 107.

    Boomsma, J. J. Lifetime monogamy and the evolution of eusociality. Philos. Trans. R. Soc. B 364, 3191–3207 (2009).

    Article  Google Scholar 

  108. 108.

    Ratnieks, F. L. & Wenseleers, T. Altruism in insect societies and beyond: voluntary or enforced? Trends Ecol. Evol. 23, 45–52 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  109. 109.

    Ratnieks, F. L. W., Foster, K. R. & Wenseleers, T. Conflict resolution in insect societies. Annu. Rev. Entomol. 51, 581–608 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110.

    Wenseleers, T. & Ratnieks, F. L. W. Enforced altruism in insect societies. Nature 444, 50 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  111. 111.

    Monnin, T., Ratnieks, F. L. W., Jones, G. R. & Beard, R. Pretender punishment induced by chemical signalling in a queenless ant. Nature 419, 61 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    Wenseleers, T. & Ratnieks, F. L. W. Tragedy of the commons in Melipona bees. Proc. R. Soc. Lond. B 271, 310–312 (2004).

    Article  Google Scholar 

  113. 113.

    Bronstein, J.L. Mutualism 1st edn. (Oxford University Press, 2015).

  114. 114.

    Hartmann, A. C., Baird, A. H., Knowlton, N. & Huang, D. The paradox of environmental symbiont acquisition in obligate mutualisms. Curr. Biol. 27, 3711–3716 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  115. 115.

    Jones, E. I. et al. Cheaters must prosper: reconciling theoretical and empirical perspectives on cheating in mutualism. Ecol. Lett. 18, 1270–1284 (2015).

    PubMed  Article  Google Scholar 

  116. 116.

    Goulson, D. Foraging strategies of insects for gathering nectar and pollen, and implications for plant ecology and evolution. Perspect. Plant Ecol. Evol. Syst. 2, 185–209 (1999).

    Article  Google Scholar 

  117. 117.

    Fischer, M. K., Hoffmann, K. H. & Völkl, W. Competition for mutualists in an ant–homopteran interaction mediated by hierarchies of ant attendance. Oikos 92, 531–541 (2001).

    Article  Google Scholar 

  118. 118.

    Jandér, K. C. & Herre, E. A. Host sanctions and pollinator cheating in the fig tree–fig wasp mutualism. Proc. R. Soc. Lond. B 277, 1481–1488 (2010).

    Article  Google Scholar 

  119. 119.

    Bshary, R. & Schäffer, D. Choosy reef fish select cleaner fish that provide high-quality service. Anim. Behav. 63, 557–564 (2002).

    Article  Google Scholar 

  120. 120.

    Kiers, E. T., Rousseau, R. A., West, S. A. & Denison, R. F. Host sanctions and the legume–rhizobium mutualism. Nature 425, 78–81 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  121. 121.

    Zhang, M. M., Poulsen, M. & Currie, C. R. Symbiont recognition of mutualistic bacteria by Acromyrmex leaf-cutting ants. ISME J. 1, 313–320 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  122. 122.

    Aanen, D. K. et al. High symbiont relatedness stabilizes mutualistic cooperation in fungus-growing termites. Science 326, 1103–1106 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  123. 123.

    Visick, K. L., Foster, J., Doino, J., McFall-Ngai, M. & Ruby, E. G. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J. Bacteriol. 182, 4578–4586 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Schwartzman, J. A. & Ruby, E. G. A conserved chemical dialog of mutualism: lessons from squid and vibrio. Microbes Infect. 18, 1–10 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  125. 125.

    Nyholm, S. V. & McFall-Ngai, M. The winnowing: establishing the squid–Vibrio symbiosis. Nat. Rev. Microbiol. 2, 632–642 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  126. 126.

    Ratnieks, F. L. W. Reproductive harmony via mutual policing by workers in eusocial hymenoptera. Am. Nat. 132, 217–236 (1988).

    Article  Google Scholar 

  127. 127.

    Cant, M. A. The role of threats in animal cooperation. Proc. R. Soc. Lond. 278, 170–178 (2010).

    Article  Google Scholar 

  128. 128.

    West, S. A., Kiers, E. T., Simms, E. L. & Denison, R. F. Sanctions and mutualism stability: why do rhizobia fix nitrogen? Proc. R. Soc. Lond. B 269, 685–694 (2002).

    Article  Google Scholar 

  129. 129.

    Foster, K. R. & Kokko, H. Cheating can stabilize cooperation in mutualisms. Proc. R. Soc. Lond. B 273, 2233–2239 (2006).

    Article  Google Scholar 

  130. 130.

    Frank, S. A. Mutual policing and repression of competition in the evolution of cooperative groups. Nature 377, 520–522 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  131. 131.

    Foster, K. R. Diminishing returns in social evolution: the not‐so‐tragic commons. J. Evol. Biol. 17, 1058–1072 (2004).

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    Martin, S. J., Beekman, M., Wossler, T. C. & Ratnieks, F. L. W. Parasitic Cape honeybee workers, Apis mellifera capensis, evade policing. Nature 415, 163 (2002).

    CAS  PubMed  Article  Google Scholar 

  133. 133.

    Montague, C. E. & Oldroyd, B. P. The evolution of worker sterility in honey bees: an investigation into a behavioral mutant causing failure of worker policing. Evolution 52, 1408–1415 (1998).

    PubMed  Article  Google Scholar 

  134. 134.

    Beekman, M., Komdeur, J. & Ratnieks, F. L. W. Reproductive conflicts in social animals: who has power? Trends Ecol. Evol. 18, 277–282 (2003).

    Article  Google Scholar 

  135. 135.

    Irwin, R. E., Bronstein, J. L., Manson, J. S. & Richardson, L. Nectar robbing: ecological and evolutionary perspectives. Annu. Rev. Ecol. Evol. Syst. 41, 271–292 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. Bentley, A. Bourke, J. Boomsma and S. West for discussions that were central to the project; S. Frank and two anonymous referees for thoughtful comments on the paper; and C. Jandér, A. Case, J. Ågren, and T. Wenseleers for images. J.A.Å. was supported by fellowships from the Sweden-America Foundation and the Wenner-Gren Foundations. K.R.F. is funded by European Research Council Grant 787932 and Wellcome Trust Investigator award 209397/Z/17/Z. K.R.F. also thanks D. Newman and members of the Caltech Evolution class for stimulating discussions.

Author information

Affiliations

Authors

Contributions

All authors contributed to the writing of the article. J.A.Å. and K.R.F. conceived the article, N.G.D. and K.R.F. developed the models and N.G.D. did the analysis.

Corresponding author

Correspondence to Kevin R. Foster.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Equations, Supplementary Tables 1–3 and Supplementary Box 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ågren, J.A., Davies, N.G. & Foster, K.R. Enforcement is central to the evolution of cooperation. Nat Ecol Evol 3, 1018–1029 (2019). https://doi.org/10.1038/s41559-019-0907-1

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing