Enforcement is central to the evolution of cooperation

Abstract

Cooperation occurs at all levels of life, from genomes, complex cells and multicellular organisms to societies and mutualisms between species. A major question for evolutionary biology is what these diverse systems have in common. Here, we review the full breadth of cooperative systems and find that they frequently rely on enforcement mechanisms that suppress selfish behaviour. We discuss many examples, including the suppression of transposable elements, uniparental inheritance of mitochondria and plastids, anti-cancer mechanisms, reciprocation and punishment in humans and other vertebrates, policing in eusocial insects and partner choice in mutualisms between species. To address a lack of accompanying theory, we develop a series of evolutionary models that show that the enforcement of cooperation is widely predicted. We argue that enforcement is an underappreciated, and often critical, ingredient for cooperation across all scales of biological organization.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The importance of enforcement is revealed by its absence at all levels of biological organization.

Jon Ågren (b); Andrea Case (c); Dave Watts/Alamy Stock Photo (d); Tom Wenseleers (e); Christian Ziegler and Charlotte Jandér (f); Nature Picture Library/Alamy Stock Photo (g)

Fig. 2: Models of enforcement across the levels of biological organization.

Lena London, used under creative commons license (Meerkats in d)

Fig. 3: The evolution of enforcement is predicted to reduce selfishness and promote cooperation across all levels of biological organization.

Change history

  • 05 July 2019

    Owing to a technical error, for a short period of time the Published Online date displaying for the HTML version of this Review Article was incorrect as 28 June 2019; it should have read 24 June 2019. This has now been corrected. The PDF was unaffected.

References

  1. 1.

    Maynard Smith, J. & Szathmáry, E. The Major Transitions in Evolution (W.H. Freeman Spektrum, 1995).

  2. 2.

    Michod, R.E. Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality (Princeton University Press, 1999).

  3. 3.

    Bourke, A.F.G. Principles of Social Evolution (Oxford University Press, 2011).

  4. 4.

    West, S. A., Fisher, R. M., Gardner, A. & Kiers, E. T. Major evolutionary transitions in individuality. Proc. Natl Acad. Sci. USA 112, 10112–10119 (2015).

  5. 5.

    Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16 (1964).

  6. 6.

    Hamilton, W. D. The genetical evolution of social behaviour. II. J. Theor. Biol. 7, 17–52 (1964).

  7. 7.

    Foster, K. R. A defense of sociobiology. Cold Spring Harb. Symp. Quant. Biol. 74, 403–418 (2009).

  8. 8.

    Boomsma, J. J. & Gawne, R. Superorganismality and caste differentiation as points of no return: how the major evolutionary transitions were lost in translation. Biol. Rev. Camb. Philos. Soc. 93, 28–54 (2018).

  9. 9.

    Queller, D. C. Cooperators since life began. Q. Rev. Biol. 72, 184–188 (1997).

  10. 10.

    Wheeler, W. M. The ant-colony as an organism. J. Morphol. 22, 307–325 (1911).

  11. 11.

    El Mouden, C., West, S. A. & Gardner, A. The enforcement of cooperation by policing. Evolution 64, 2139–2152 (2010).

  12. 12.

    Foster, K. R. & Wenseleers, T. A general model for the evolution of mutualisms. J. Evol. Biol. 19, 1283–1293 (2006).

  13. 13.

    Szathmáry, E. Transitions and social evolution. Philosophy & Theory in Biology 4 https://doi.org/10.3998/ptb.6959004.0004.002 (2012).

  14. 14.

    Frank, S. A. Perspective: repression of competition and the evolution of cooperation. Evolution 57, 693–705 (2003).

  15. 15.

    Hamilton, W. D. Extraordinary sex ratios. Science 156, 477–488 (1967).

  16. 16.

    Leigh, E. G. How does selection reconcile individual advantage with the good of the group? Proc. Natl Acad. Sci. USA 74, 4542–4546 (1977).

  17. 17.

    Leigh, E.G. Adaptation and Diversity: Natural History and the Mathematics of Evolution 1st edn. (Freeman, 1971).

  18. 18.

    Alexander, R.D. The Biology of Moral Systems (Transaction Publishers, 1987).

  19. 19.

    Mulder, R. A. & Langmore, N. E. Dominant males punish helpers for temporary defection in superb fairy-wrens. Anim. Behav. 45, 830–833 (1993).

  20. 20.

    Ratnieks, F. L. W. & Visscher, P. K. Worker policing in the honeybee. Nature 342, 796–797 (1989).

  21. 21.

    Ågren, J. A. Evolutionary transitions in individuality: insights from transposable elements. Trends Ecol. Evol. 29, 90–96 (2014).

  22. 22.

    Friedli, M. & Trono, D. The developmental control of transposable elements and the evolution of higher species. Annu. Rev. Cell Dev. Biol. 31, 429–451 (2015).

  23. 23.

    Blackstone, N. W. Why did eukaryotes evolve only once? Genetic and energetic aspects of conflict and conflict mediation. Philos. Trans. R. Soc. B 368, 20120266 (2013).

  24. 24.

    Radzvilavicius, A. L. & Blackstone, N. W. Conflict and cooperation in eukaryogenesis: implications for the timing of endosymbiosis and the evolution of sex. J. R. Soc. Interface 12, 20150584 (2015).

  25. 25.

    Havird, J. C. et al. Selfish mitonuclear conflict. Curr. Biol. 29, PR496–R511 (2019).

  26. 26.

    Ostrowski, E. A. Enforcing cooperation in the social amoebae. Curr. Biol. 29, PR474–R484 (2019).

  27. 27.

    Nunney, L. The real war on cancer: the evolutionary dynamics of cancer suppression. Evol. Appl. 6, 11–19 (2013).

  28. 28.

    Aktipis, C. A. et al. Cancer across the tree of life: cooperation and cheating in multicellularity. Philos. Trans. R. Soc. B 370, 20140219 (2015).

  29. 29.

    Singh, M. & Boomsma, J. J. Policing and punishment across the domains of social evolution. Oikos 124, 971–982 (2015).

  30. 30.

    Griffin, A. Policing. Curr. Biol. 29, PR431–R432 (2019).

  31. 31.

    Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).

  32. 32.

    Higgs, P. G. & Lehman, N. The RNA World: molecular cooperation at the origins of life. Nat. Rev. Genet. 16, 7–17 (2015).

  33. 33.

    Dawkins, R. The Selfish Gene (Oxford University Press, 1976).

  34. 34.

    Herre, E. A., Knowlton, N., Mueller, U. G. & Rehner, S. A. The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol. Evol. 14, 49–53 (1999).

  35. 35.

    Iranzo, J., Puigbo, P., Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Inevitability of genetic parasites. Genome Biol. Evol. 26, 2856–2869 (2016).

  36. 36.

    Burt, A. & Trivers, R. Genes in Conflict: The Biology of Selfish Genetic Elements (Belknap Press of Harvard University Press, 2006).

  37. 37.

    Hickey, D. A. Selfish DNA — a sexually transmitted nuclear parasite. Genetics 101, 519–531 (1982).

  38. 38.

    Hurst, L. D., Atlan, A. & Bengtsson, B. O. Genetic conflicts. Q. Rev. Biol. 71, 317–364 (1996).

  39. 39.

    Wagner, A. Periodic extinctions of transposable elements in bacterial lineages: evidence from intragenomic variation in multiple genomes. Mol. Biol. Evol. 23, 723–733 (2006).

  40. 40.

    Kelleher, E. S. Reexamining the P-element invasion of Drosophila melanogaster through the lens of piRNA silencing. Genetics 203, 1513–1531 (2016).

  41. 41.

    Lu, J. & Clark, A. G. Population dynamics of PIWI-interacting RNAs (piRNAs) and their targets in Drosophila. Genome Res. 20, 212–227 (2010).

  42. 42.

    Kelleher, E. S. & Barbash, D. A. Analysis of piRNA-mediated silencing of active TEs in Drosophila melanogaster suggests limits on the evolution of host genome defense. Mol. Biol. Evol. 30, 1816–1829 (2013).

  43. 43.

    Hill, T., Schlotterer, C. & Betancourt, A. J. Hybrid dysgenesis in Drosophila simulans associated with a rapid invasion of the P-element. PLoS Genet. 12, e1005920 (2016).

  44. 44.

    Blumenstiel, J. P. Evolutionary dynamics of transposable elements in a small RNA world. Trends Genet. 27, 23–31 (2011).

  45. 45.

    Ågren, J. A. & Wright, S. I. Selfish genetic elements and plant genome size evolution. Trends Plant Sci. 20, 195–196 (2015).

  46. 46.

    Willing, E. M. et al. Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nat. Plants 1, 14023 (2015).

  47. 47.

    Ågren, J. A. & Clark, A. G. Selfish genetic elements. PLoS Genet. 14, e1007700 (2018).

  48. 48.

    Lindholm, A. K. et al. The ecology and evolutionary dynamics of meiotic drive. Trends Ecol. Evol. 31, 315–326 (2016).

  49. 49.

    Burt, A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc. R. Soc. Lond. B 270, 921–928 (2003).

  50. 50.

    Unckless, R. L., Clark, A. G. & Messer, P. W. Evolution of resistance against CRISPR/Cas9 gene drive. Genetics 205, 827–841 (2017).

  51. 51.

    Champer, J. et al. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. PLoS Genet. 13, e1006796 (2017).

  52. 52.

    Dyall, S. D., Brown, M. T. & Johnson, P. J. Ancient invasions: from endosymbionts to organelles. Science 304, 253–257 (2004).

  53. 53.

    Archibald, J. M. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25, R911–R921 (2015).

  54. 54.

    Martin, W. et al. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc. Natl Acad. Sci. USA 99, 12246–12251 (2002).

  55. 55.

    Cosmides, L. M. & Tooby, J. Cytoplasmic inheritance and intragenomic conflict. J. Theor. Biol. 89, 83–129 (1981).

  56. 56.

    Eberhard, W. G. Evolutionary consequences of intracellular organelle competition. Q. Rev. Biol. 55, 231–249 (1980).

  57. 57.

    Hastings, I. M. Population genetic aspects of deleterious cytoplasmic genomes and their effect on the evolution of sexual reproduction. Genet. Res. 59, 215–225 (1992).

  58. 58.

    Christie, J. R., Schaerf, T. M. & Beekman, M. Selection against heteroplasmy explains the evolution of uniparental inheritance of mitochondria. PLoS Genet. 11, e1005112 (2015).

  59. 59.

    Sato, M. & Sato, K. Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochim. Biophys. Acta 1833, 1979–1984 (2013).

  60. 60.

    Frank, S. A. & Hurst, L. D. Mitochondria and male disease. Nature 383, 224 (1996).

  61. 61.

    Touzet, P. & Meyer, E. H. Cytoplasmic male sterility and mitochondrial metabolism in plants. Mitochondrion 19, 166–171 (2014).

  62. 62.

    Fishman, L. & Willis, J. H. A cytonuclear incompatibility causes anther sterility in Mimulus hybrids. Evolution 60, 1372–1381 (2006).

  63. 63.

    Case, A. L., Finseth, F. R., Barr, C. M. & Fishman, L. Selfish evolution of cytonuclear hybrid incompatibility in Mimulus. Proc. R. Soc. Lond. B 283, 20161493 (2016).

  64. 64.

    Ågren, J.A., Munasinghe, M. & Clark, A.G. Sexual conflict through mother’s curse and father’s curse. Theor. Popul. Biol. https://doi.org/10.1016/j.tpb.2018.12.007 (2019).

  65. 65.

    Fenn, K. & Blaxter, M. Wolbachia genomes: revealing the biology of parasitism and mutualism. Trends Parasitol. 22, 60–65 (2006).

  66. 66.

    Dyson, E. A. & Hurst, G. D. D. Persistence of an extreme sex-ratio bias in a natural population. Proc. Natl Acad. Sci. USA 101, 6520–6523 (2004).

  67. 67.

    Charlat, S. et al. Extraordinary flux in sex ratio. Science 317, 214 (2007).

  68. 68.

    Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016).

  69. 69.

    Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027 (2004).

  70. 70.

    Nadell, C. D., Foster, K. R. & Xavier, J. B. Emergence of spatial structure in cell groups and the evolution of cooperation. PLOS Comput. Biol. 6, e1000716 (2010).

  71. 71.

    Harrison, F. & Buckling, A. Hypermutability impedes cooperation in pathogenic bacteria. Curr. Biol. 15, 1968–1971 (2005).

  72. 72.

    Foster, K. R., Shaulsky, G., Strassmann, J. E., Queller, D. C. & Thompson, C. R. L. Pleiotropy as a mechanism to stabilize cooperation. Nature 431, 693–696 (2004).

  73. 73.

    Foster, K. R. The sociobiology of molecular systems. Nat. Rev. Genet. 12, 193–203 (2011).

  74. 74.

    Niklas, K. J. The evolutionary-developmental origins of multicellularity. Am. J. Bot. 101, 6–25 (2014).

  75. 75.

    Rainey, P. B. & De Monte, S. Resolving conflicts during the evolutionary transition to multicellular life. Annu. Rev. Ecol. Evol. Syst. 45, 599–620 (2014).

  76. 76.

    Fisher, R. M., Cornwallis, C. K. & West, S. A. Group formation, relatedness, and the evolution of multicellularity. Curr. Biol. 23, 1120–1125 (2013).

  77. 77.

    DeGregori, J. Challenging the axiom: does the occurrence of oncogenic mutations truly limit cancer development with age? Oncogene 32, 1869 (2013).

  78. 78.

    Michod, R. E. & Roze, D. Cooperation and conflict in the evolution of multicellularity. Hered. (Edinb.) 86, 1–7 (2001).

  79. 79.

    Evan, G. I. & Vousden, K. H. Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348 (2001).

  80. 80.

    Abegglen, L. M. et al. Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans. J. Am. Med. Assoc. 314, 1850–1860 (2015).

  81. 81.

    Sulak, M. et al. TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. eLife 5, e11994 (2016).

  82. 82.

    Hogan, C. et al. Characterization of the interface between normal and transformed epithelial cells. Nat. Cell Biol. 11, 460 (2009).

  83. 83.

    Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

  84. 84.

    Feng, M. et al. Programmed cell removal by calreticulin in tissue homeostasis and cancer. Nat. Commun. 9, 3194 (2018).

  85. 85.

    Morris, K., Austin, J. J. & Belov, K. Low major histocompatibility complex diversity in the Tasmanian devil predates European settlement and may explain susceptibility to disease epidemics. Biol. Lett. 9, 20120900 (2013).

  86. 86.

    Epstein, B. et al. Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Nat. Commun. 7, 12684 (2016).

  87. 87.

    Doonan, J. H. & Sablowski, R. Walls around tumours — why plants do not develop cancer. Nat. Rev. Cancer 10, 794–802 (2010).

  88. 88.

    Biedermann, S. et al. The retinoblastoma homolog RBR1 mediates localization of the repair protein RAD51 to DNA lesions in Arabidopsis. EMBO J. 36, 1279–1297 (2017).

  89. 89.

    Cornwallis, C. K., West, S. A. & Griffin, A. S. Routes to indirect fitness in cooperatively breeding vertebrates: kin discrimination and limited dispersal. J. Evol. Biol. 22, 2445–2457 (2009).

  90. 90.

    Clutton-Brock, T. H. & Parker, G. A. Punishment in animal societies. Nature 373, 209–216 (1995).

  91. 91.

    Riehl, C. & Frederickson, M. E. Cheating and punishment in cooperative animal societies. Philos. Trans. R. Soc. Lond. B 371, 20150090 (2016).

  92. 92.

    Cant, M. A., Nichols, H. J., Johnstone, R. A. & Hodge, S. J. Policing of reproduction by hidden threats in a cooperative mammal. Proc. Natl Acad. Sci. USA 111, 326–330 (2014).

  93. 93.

    Lehmann, L., Foster, K. R., Borenstein, E. & Feldman, M. W. Social and individual learning of helping in humans and other species. Trends Ecol. Evol. 23, 664–671 (2008).

  94. 94.

    West, S. A., El Mouden, C. & Gardner, A. Sixteen common misconceptions about the evolution of cooperation in humans. Evol. Hum. Behav. 32, 231–262 (2011).

  95. 95.

    Whitehouse, H., McQuinn, B., Buhrmester, M. & Swann, W. B. Jr. Brothers in arms: Libyan revolutionaries bond like family. Proc. Natl Acad. Sci. USA 111, 17783–17785 (2014).

  96. 96.

    Hammerstein, P. & Noe, R. Biological trade and markets. Philos. Trans. R. Soc. B 371, 20150101 (2016).

  97. 97.

    Noë, R. & Hammerstein, P. Biological markets: supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behav. Ecol. Sociobiol. 35, 1–11 (1994).

  98. 98.

    Nesse, R. M. Runaway social selection for displays of partner value and altruism. Biol. Theory 2, 143–155 (2007).

  99. 99.

    Trivers, R. L. Evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971).

  100. 100.

    Axelrod, R. & Hamilton, W. D. The evolution of cooperation. Science 211, 1390–1396 (1981).

  101. 101.

    Nowak, M. A. & Sigmund, K. Evolution of indirect reciprocity by image scoring. Nature 393, 573–577 (1998).

  102. 102.

    Barclay, P. & Raihani, N. Partner choice versus punishment in human Prisoner’s Dilemmas. Evol. Hum. Behav. 37, 263–271 (2016).

  103. 103.

    Gardner, A. & West, S. A. Cooperation and punishment, especially in humans. Am. Nat. 164, 753–764 (2004).

  104. 104.

    Úbeda, F. & Duéñez‐Guzmán, E. A. Power and corruption. Evolution 65, 1127–1139 (2011).

  105. 105.

    Raihani, N. J. & Bshary, R. The reputation of punishers. Trends Ecol. Evol. 30, 98–103 (2015).

  106. 106.

    Hughes, W. O., Oldroyd, B. P., Beekman, M. & Ratnieks, F. L. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216 (2008).

  107. 107.

    Boomsma, J. J. Lifetime monogamy and the evolution of eusociality. Philos. Trans. R. Soc. B 364, 3191–3207 (2009).

  108. 108.

    Ratnieks, F. L. & Wenseleers, T. Altruism in insect societies and beyond: voluntary or enforced? Trends Ecol. Evol. 23, 45–52 (2008).

  109. 109.

    Ratnieks, F. L. W., Foster, K. R. & Wenseleers, T. Conflict resolution in insect societies. Annu. Rev. Entomol. 51, 581–608 (2006).

  110. 110.

    Wenseleers, T. & Ratnieks, F. L. W. Enforced altruism in insect societies. Nature 444, 50 (2006).

  111. 111.

    Monnin, T., Ratnieks, F. L. W., Jones, G. R. & Beard, R. Pretender punishment induced by chemical signalling in a queenless ant. Nature 419, 61 (2002).

  112. 112.

    Wenseleers, T. & Ratnieks, F. L. W. Tragedy of the commons in Melipona bees. Proc. R. Soc. Lond. B 271, 310–312 (2004).

  113. 113.

    Bronstein, J.L. Mutualism 1st edn. (Oxford University Press, 2015).

  114. 114.

    Hartmann, A. C., Baird, A. H., Knowlton, N. & Huang, D. The paradox of environmental symbiont acquisition in obligate mutualisms. Curr. Biol. 27, 3711–3716 (2017).

  115. 115.

    Jones, E. I. et al. Cheaters must prosper: reconciling theoretical and empirical perspectives on cheating in mutualism. Ecol. Lett. 18, 1270–1284 (2015).

  116. 116.

    Goulson, D. Foraging strategies of insects for gathering nectar and pollen, and implications for plant ecology and evolution. Perspect. Plant Ecol. Evol. Syst. 2, 185–209 (1999).

  117. 117.

    Fischer, M. K., Hoffmann, K. H. & Völkl, W. Competition for mutualists in an ant–homopteran interaction mediated by hierarchies of ant attendance. Oikos 92, 531–541 (2001).

  118. 118.

    Jandér, K. C. & Herre, E. A. Host sanctions and pollinator cheating in the fig tree–fig wasp mutualism. Proc. R. Soc. Lond. B 277, 1481–1488 (2010).

  119. 119.

    Bshary, R. & Schäffer, D. Choosy reef fish select cleaner fish that provide high-quality service. Anim. Behav. 63, 557–564 (2002).

  120. 120.

    Kiers, E. T., Rousseau, R. A., West, S. A. & Denison, R. F. Host sanctions and the legume–rhizobium mutualism. Nature 425, 78–81 (2003).

  121. 121.

    Zhang, M. M., Poulsen, M. & Currie, C. R. Symbiont recognition of mutualistic bacteria by Acromyrmex leaf-cutting ants. ISME J. 1, 313–320 (2007).

  122. 122.

    Aanen, D. K. et al. High symbiont relatedness stabilizes mutualistic cooperation in fungus-growing termites. Science 326, 1103–1106 (2009).

  123. 123.

    Visick, K. L., Foster, J., Doino, J., McFall-Ngai, M. & Ruby, E. G. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J. Bacteriol. 182, 4578–4586 (2000).

  124. 124.

    Schwartzman, J. A. & Ruby, E. G. A conserved chemical dialog of mutualism: lessons from squid and vibrio. Microbes Infect. 18, 1–10 (2016).

  125. 125.

    Nyholm, S. V. & McFall-Ngai, M. The winnowing: establishing the squid–Vibrio symbiosis. Nat. Rev. Microbiol. 2, 632–642 (2004).

  126. 126.

    Ratnieks, F. L. W. Reproductive harmony via mutual policing by workers in eusocial hymenoptera. Am. Nat. 132, 217–236 (1988).

  127. 127.

    Cant, M. A. The role of threats in animal cooperation. Proc. R. Soc. Lond. 278, 170–178 (2010).

  128. 128.

    West, S. A., Kiers, E. T., Simms, E. L. & Denison, R. F. Sanctions and mutualism stability: why do rhizobia fix nitrogen? Proc. R. Soc. Lond. B 269, 685–694 (2002).

  129. 129.

    Foster, K. R. & Kokko, H. Cheating can stabilize cooperation in mutualisms. Proc. R. Soc. Lond. B 273, 2233–2239 (2006).

  130. 130.

    Frank, S. A. Mutual policing and repression of competition in the evolution of cooperative groups. Nature 377, 520–522 (1995).

  131. 131.

    Foster, K. R. Diminishing returns in social evolution: the not‐so‐tragic commons. J. Evol. Biol. 17, 1058–1072 (2004).

  132. 132.

    Martin, S. J., Beekman, M., Wossler, T. C. & Ratnieks, F. L. W. Parasitic Cape honeybee workers, Apis mellifera capensis, evade policing. Nature 415, 163 (2002).

  133. 133.

    Montague, C. E. & Oldroyd, B. P. The evolution of worker sterility in honey bees: an investigation into a behavioral mutant causing failure of worker policing. Evolution 52, 1408–1415 (1998).

  134. 134.

    Beekman, M., Komdeur, J. & Ratnieks, F. L. W. Reproductive conflicts in social animals: who has power? Trends Ecol. Evol. 18, 277–282 (2003).

  135. 135.

    Irwin, R. E., Bronstein, J. L., Manson, J. S. & Richardson, L. Nectar robbing: ecological and evolutionary perspectives. Annu. Rev. Ecol. Evol. Syst. 41, 271–292 (2010).

Download references

Acknowledgements

The authors thank M. Bentley, A. Bourke, J. Boomsma and S. West for discussions that were central to the project; S. Frank and two anonymous referees for thoughtful comments on the paper; and C. Jandér, A. Case, J. Ågren, and T. Wenseleers for images. J.A.Å. was supported by fellowships from the Sweden-America Foundation and the Wenner-Gren Foundations. K.R.F. is funded by European Research Council Grant 787932 and Wellcome Trust Investigator award 209397/Z/17/Z. K.R.F. also thanks D. Newman and members of the Caltech Evolution class for stimulating discussions.

Author information

All authors contributed to the writing of the article. J.A.Å. and K.R.F. conceived the article, N.G.D. and K.R.F. developed the models and N.G.D. did the analysis.

Correspondence to Kevin R. Foster.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Equations, Supplementary Tables 1–3 and Supplementary Box 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark