Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Global dataset shows geography and life form predict modern plant extinction and rediscovery

Matters Arising to this article was published on 09 March 2020

Abstract

Most people can name a mammal or bird that has become extinct in recent centuries, but few can name a recently extinct plant. We present a comprehensive, global analysis of modern extinction in plants. Almost 600 species have become extinct, at a higher rate than background extinction, but almost as many have been erroneously declared extinct and then been rediscovered. Reports of extinction on islands, in the tropics and of shrubs, trees or species with narrow ranges are least likely to be refuted by rediscovery. Plant extinctions endanger other organisms, ecosystems and human well-being, and must be understood for effective conservation planning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution of extinct and rediscovered seed plant species among geographical regions, climate zones and life forms.
Fig. 2: Phylogenetic distribution of seed plant families with extinct and rediscovered species.

Similar content being viewed by others

Data availability

All new data on plant extinction and rediscovery analysed during this study are available as supplementary files linked to this published article. The data used for comparison with all seed plants are from the World Checklist of Selected Plant Families and are, or will soon become, publicly available from http://wcsp.science.kew.org.

References

  1. Pimm, S. L. & Raven, P. Nature 403, 843–845 (2000).

    Article  CAS  Google Scholar 

  2. Brummitt, N. A. et al. PloS ONE 10, e0135152 (2015).

  3. Pelletier, T. A., Carstens, B. C., Tank, D. C., Sullivan, J. & Espindola, A. Proc. Natl Acad. Sci. USA 115, 13027–13032 (2018).

    Article  CAS  Google Scholar 

  4. The IUCN Red List of Threatened Species Version 3.1 (IUCN, accessed June 2016).

  5. Ceballos, G. et al. Sci. Adv. 1, e1400253 (2015).

  6. Dunn, R. R. Conserv. Biol. 19, 1030–1036 (2005).

    Article  Google Scholar 

  7. Regnier, C. et al. Proc. Natl Acad. Sci. USA 112, 7761–7766 (2015).

    Article  CAS  Google Scholar 

  8. Bellard, C., Rysman, J. F., Leroy, B., Claud, C. & Mace, G. M. Nat. Ecol. Evol. 1, 1862 (2017).

    Article  Google Scholar 

  9. Gray, A. The ecology of plant extinction: rates, traits and island comparisons. Oryx, 1–5 (2018).

  10. Fonseca, C. R. Conserv. Biol. 23, 1507–1515 (2009).

    Article  Google Scholar 

  11. Linnaeus, C. Species Plantarum (Salvius, 1753).

  12. Regnier, C., Fontaine, B. & Bouchet, P. Conserv. Biol. 23, 1214–1221 (2009).

    Article  Google Scholar 

  13. De Vos, J. M., Joppa, L. N., Gittleman, J. L., Stephens, P. R. & Pimm, S. L. Conserv. Biol. 29, 452–462 (2015).

    Article  Google Scholar 

  14. Pimm, S. L. et al. Science 344, 987 (2014).

    Article  CAS  Google Scholar 

  15. Bellard, C., Cassey, P. & Blackburn, T. M. Biol. Lett. 12, 20150623 (2016).

  16. Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. Science 269, 347–350 (1995).

    Article  CAS  Google Scholar 

  17. Turvey, S. T. & Fritz, S. A. Philos. Trans. R. Soc. B 366, 2564–2576 (2011).

    Article  Google Scholar 

  18. Bebber, D. P. et al. Proc. Natl Acad. Sci. USA 107, 22169–22171 (2010).

    Article  CAS  Google Scholar 

  19. Mooers, A. O., Goring, S. J., Turvey, S. T. & Kuhn, T. S. in Holocene Extinctions (ed. Turvey, S.T.) 263–277 (Oxford Univ. Press, 2009).

  20. Cronk, Q. Plant extinctions take time. Science 353, 446–447 (2016).

    Article  CAS  Google Scholar 

  21. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Nature 403, 853–858 (2000).

    Article  CAS  Google Scholar 

  22. Beech, E., Rivers, M., Oldfield, S. & Smith, P. P. J. Sustain. For. 36, 454–489 (2017).

    Article  Google Scholar 

  23. World Checklist of Selected Plant Families (WCSP, 2018); http://wcsp.science.kew.org/

  24. Welch, J. N. & Beaulieu, J. M. Diversity 10, 63 (2018).

    Article  Google Scholar 

  25. Nic Lughadha, E. M. et al. in State of the World’s Plants 2017 (ed. Willis, K. J.) 72–77 (Royal Botanic Gardens, 2017).

  26. Keith, D. A. & Burgman, M. A. Biol. Conserv. 117, 41–48 (2004).

    Article  Google Scholar 

  27. Fisher, D. O. & Blomberg, S. P. Proc. R. Soc. B 278, 1090–1097 (2011).

    Article  Google Scholar 

  28. Magallón, S., Gomez-Acevedo, S., Sanchez-Reyes, L. L. & Hernandez-Hernandez, T. New Phytol. 207, 437–453 (2015).

    Article  Google Scholar 

  29. Pagel, M. Nature 401, 877–884 (1999).

    Article  CAS  Google Scholar 

  30. Blomberg, S. P., Garland, T. & Ives, A. R. Evolution 57, 717–745 (2003).

    Article  Google Scholar 

  31. Fritz, S. A. & Purvis, A. Conserv. Biol. 24, 1042–1051 (2010).

    Article  Google Scholar 

  32. Brummitt, R. K. World Geographical Scheme for Recording Plant Distributions. For International Working Group on Taxonomic Databases For Plant Sciences (TDWG) 153 (Hunt Institute for Botanical Documentation, Carnegie Mellon University, 2001).

Download references

Acknowledgements

R.G. is grateful to numerous people and institutions for support during data collection (Supplementary Dataset 1). A.M.H. acknowledges funding by the Swedish Research Council Formas (grant No. 2012-1022-215). We are grateful to S. Pimm and two anonymous reviewers for comments that improved an earlier draft and to B. walker for statistical advice.

Author information

Authors and Affiliations

Authors

Contributions

A.M.H., R.G. and M.S.V. designed the study, based on data collected by R.G.; A.M.H. analysed the data with contributions from S.Z.F., E.N.L. and M.S.V.; and A.M.H. wrote the paper with contributions from all authors. All authors approved the final version.

Corresponding authors

Correspondence to Aelys M. Humphreys or Rafaël Govaerts.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information, Supplementary References, Supplementary Figure 1 and Supplementary Table 1

Reporting Summary

Supplementary Dataset 1

Database of modern extinction in seed plants

Supplementary Dataset 2

The IUCN Red List of extinct seed plant species

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Humphreys, A.M., Govaerts, R., Ficinski, S.Z. et al. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat Ecol Evol 3, 1043–1047 (2019). https://doi.org/10.1038/s41559-019-0906-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-019-0906-2

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene