Minimum founding populations for the first peopling of Sahul


The timing, context and nature of the first people to enter Sahul is still poorly understood owing to a fragmented archaeological record. However, quantifying the plausible demographic context of this founding population is essential to determine how and why the initial peopling of Sahul occurred. We developed a stochastic, age-structured model using demographic rates from hunter-gatherer societies, and relative carrying capacity hindcasted with LOVECLIM’s net primary productivity for northern Sahul. We projected these populations to determine the resilience and minimum sizes required to avoid extinction. A census founding population of between 1,300 and 1,550 individuals was necessary to maintain a quasi-extinction threshold of 0.1. This minimum founding population could have arrived at a single point in time, or through multiple voyages of ≥130 people over ~700–900 years. This result shows that substantial population amalgamation in Sunda and Wallacea in Marine Isotope Stages 3–4 provided the conditions for the successful, large-scale and probably planned peopling of Sahul.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Estimating quasi-extinction probability for the first Sahul population.
Fig. 2: Change in net primary production and indicative human carrying capacity.

Data availability

All data are available for download at

Code availability

All R code is available for download at


  1. 1.

    Saltré, F. et al. Climate change not to blame for Late Quaternary megafauna extinctions in Australia. Nat. Comm. 7, 10511 (2016).

    Google Scholar 

  2. 2.

    Johnson, C. N. et al. What caused extinction of the Pleistocene megafauna of Sahul? Proc. R. Soc. Lond. B 283, 20152399 (2016).

    Google Scholar 

  3. 3.

    O’Connell, J. F. et al. When did Homo sapiens first reach Southeast Asia and Sahul? Proc. Natl Acad. Sci. USA 115, 8482–8490 (2018).

    PubMed  Google Scholar 

  4. 4.

    Birdsell, J. B. Some population problems involving Pleistocene man. Cold Spring Harb. Symp. Quant. Biol. 22, 47–69 (1957).

    Google Scholar 

  5. 5.

    McArthur, N. Computer simulations of small populations. Aust. Archaeol. 4, 53–57 (1976).

    Google Scholar 

  6. 6.

    Allen, J. & O’Connell, J. F. in Islands of Inquiry: Colonisation, Seafaring and the Archaeology of Maritime Landscapes, Terra Australis Vol. 29 (eds Clark, G., Leach, F. & O’Connor, S.) 31–46 (ANU E Press, 2008).

  7. 7.

    O’Connell, J. F. & Allen, J. The restaurant at the end of the universe: modelling the colonisation of Sahul. Aust. Archaeol. 74, 5–17 (2012).

    Google Scholar 

  8. 8.

    Rasmussen, M. et al. An Aboriginal Australian genome reveals separate human dispersals into Asia. Science 334, 94–98 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Williams, A. N. A new population curve for prehistoric Australia. Proc. R. Soc. Lond. B. 280, 20130486 (2013).

    Google Scholar 

  10. 10.

    Malaspinas, A.-S. et al. A genomic history of Aboriginal Australia. Nature 538, 207–214 (2016).

    CAS  PubMed  Google Scholar 

  11. 11.

    Clarkson, C. et al. Human occupation of northern Australia by 65,000 years ago. Nature 547, 306–310 (2017).

    CAS  PubMed  Google Scholar 

  12. 12.

    Clarkson, C. et al. Reply to comments on Clarkson et al. (2017) ‘Human occupation of northern Australia by 65,000 years ago’. Aust. Archaeol. 84, 84–89 (2018).

    Google Scholar 

  13. 13.

    Roberts, R. G. et al. The human colonisation of Australia: optical dates of 53,000 and 60,000 years bracket human arrival at Deaf Adder Gorge, Northern Territory. Quat. Sci. Rev. 13, 575–583 (1994).

    Google Scholar 

  14. 14.

    Turney, C. S. M. et al. Early human occupation at Devil’s Lair, southwestern Australia 50,000 years ago. Quat. Res. 55, 3–13 (2001).

    CAS  Google Scholar 

  15. 15.

    Bowler, J. M. et al. New ages for human occupation and climatic change at Lake Mungo, Australia. Nature 421, 837–840 (2003).

    CAS  PubMed  Google Scholar 

  16. 16.

    Wood, R. et al. Towards an accurate and precise chronology for the colonization of Australia: the example of Riwi, Kimberley, Western Australia. PLoS ONE 11, e0160123 (2016).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Hamm, G. et al. Cultural innovation and megafauna interaction in the early settlement of arid Australia. Nature 539, 280–283 (2016).

    PubMed  Google Scholar 

  18. 18.

    Veth, P. et al. Early human occupation of a maritime desert, Barrow Island, north-west Australia. Quat. Sci. Rev. 168, 19–29 (2017).

    Google Scholar 

  19. 19.

    Delannoy, J.-J. et al. in The Archaeology of Rock Art in Western Arnhem Land, Australia, Terra Australis Vol. 47 (eds David, B., Taçon, P. S. C., Delannoy, J.-J. & Geneste, J.-M.) 197–243 (ANU Press, 2017).

  20. 20.

    Maloney, T., O’Connor, S., Wood, R., Aplin, K. & Balme, J. Carpenters Gap 1: a 47,000 year old record of indigenous adaption and innovation. Quat. Sci. Rev. 191, 204–228 (2018).

    Google Scholar 

  21. 21.

    McDonald, J. et al. Karnatukul (Serpent’s Glen): a new chronology for the oldest site in Australia’s Western Desert. PLoS ONE 13, e0202511 (2018).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Kealy, S., Louys, J. & O’Connor, S. Islands under the sea: a review of early modern human dispersal routes and migration hypotheses through Wallacea. J. Isl. Coast. Archaeol. 11, 364–384 (2016).

    Google Scholar 

  23. 23.

    Kealy, S., Louys, J. & O’Connor, S. Reconstructing palaeogeography and inter-island visibility in the Wallacean Archipelago during the likely period of Sahul colonization, 65–45 000 years ago. Archaeol. Prospect. 24, 259–272 (2017).

    Google Scholar 

  24. 24.

    Norman, K. et al. An early colonisation pathway into northwest Australia 70–60,000 years ago. Quat. Sci. Rev. 180, 229–239 (2018).

    Google Scholar 

  25. 25.

    Bird, M. I. et al. Palaeogeography and voyage modeling indicates early human colonization of Australia was likely from Timor-Roti. Quat. Sci. Rev. 191, 431–439 (2018).

    Google Scholar 

  26. 26.

    Kealy, S., Louys, J. & O’Connor, S. Least-cost pathway models indicate northern human dispersal from Sunda to Sahul. J. Hum. Evol. 125, 59–70 (2018).

    PubMed  Google Scholar 

  27. 27.

    Bird, M. I. et al. Early human settlement of Sahul was not an accident. Sci. Rep. (2019).

  28. 28.

    Nagle, N. et al. Aboriginal Australian mitochondrial genome variation—an increased understanding of population antiquity and diversity. Sci. Rep. 7, 43041 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Tobler, R. et al. Aboriginal mitogenomes reveal 50,000 years of regionalism in Australia. Nature 544, 180–184 (2017).

    CAS  PubMed  Google Scholar 

  30. 30.

    Siler, W. A competing-risk model for animal mortality. Ecology 60, 750–757 (1979).

    Google Scholar 

  31. 31.

    Gurven, M. & Kaplan, H. Longevity among hunter-gatherers: a cross-cultural examination. Pop. Dev. Rev. 33, 321–365 (2007).

    Google Scholar 

  32. 32.

    Fenner, J. N. Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. Am. J. Phys. Anthropol. 128, 415–423 (2005).

    PubMed  Google Scholar 

  33. 33.

    Gould, R. A. Puntutjarpa Rockshelter and the Australian Desert Culture Anthropological Papers of the American Museum of Natural History Vol. 54 (American Museum of Natural History, 1977).

  34. 34.

    Durkheim, É. The Division of Labour in Society (Macmillan, 1984).

  35. 35.

    Reed, D. H., O’Grady, J. J., Ballou, J. D. & Frankham, R. The frequency and severity of catastrophic die-offs in vertebrates. Anim. Conserv. 6, 109–114 (2003).

    Google Scholar 

  36. 36.

    Tallavaara, M., Eronen, J. T. & Luoto, M. Productivity, biodiversity, and pathogens influence the global hunter-gatherer population density. Proc. Natl Acad. Sci. USA 115, 1232–1237 (2018).

    CAS  PubMed  Google Scholar 

  37. 37.

    Finlayson, C. et al. The Homo habitat niche: using the avian fossil record to depict ecological characteristics of Palaeolithic Eurasian hominins. Quat. Sci. Rev. 30, 1525–1532 (2011).

    Google Scholar 

  38. 38.

    Whyte, A. L. H., Marshall, S. J. & Chambers, G. K. Human evolution in Polynesia. Hum. Biol. 77, 157–177 (2005).

    PubMed  Google Scholar 

  39. 39.

    Hey, J. On the number of New World founders: a population genetic portrait of the peopling of the Americas. PLoS Biol. 3, e193 (2005).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Zlojutro, M. et al. Coalescent simulations of Yakut mtDNA variation suggest small founding population. Am. J. Phys. Anthropol. 139, 474–482 (2009).

    PubMed  Google Scholar 

  41. 41.

    Frankham, R. Effective population size/adult population size ratios in wildlife: a review. Genet. Res. 66, 95–107 (1995).

    Google Scholar 

  42. 42.

    Moore, J. H. Evaluating five models of human colonization. Am. Anthropol. 103, 395–408 (2001).

    Google Scholar 

  43. 43.

    Walker, R. et al. Growth rates and life histories in twenty-two small-scale societies. Am. J. Hum. Biol. 18, 295–311 (2006).

    PubMed  Google Scholar 

  44. 44.

    Hawkes, K., Smith, K. R. & Robson, S. L. Mortality and fertility rates in humans and chimpanzees: how within-species variation complicates cross-species comparisons. Am. J. Hum. Biol. 21, 578–586 (2009).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Hawkes, K. & Coxworth, J. E. Grandmothers and the evolution of human longevity: a review of findings and future directions. Evol. Anthropol. 22, 294–302 (2013).

    PubMed  Google Scholar 

  46. 46.

    Blurton Jones, N. G., Hawkes, K. & O’Connell, J. F. Antiquity of postreproductive life: are there modern impacts on hunter-gatherer postreproductive life spans? Am. J. Hum. Biol. 14, 184–205 (2002).

    PubMed  Google Scholar 

  47. 47.

    Bradshaw, C. J. A. & Brook, B. W. Human population reduction is not a quick fix for environmental problems. Proc. Natl Acad. Sci. USA 111, 16610–16615 (2014).

    CAS  PubMed  Google Scholar 

  48. 48.

    Bentley, G. R. Hunter-gatherer energetics and fertility: a reassessment of the !Kung San. Hum. Ecol. 13, 79–109 (1985).

    Google Scholar 

  49. 49.

    Caswell, H. Matrix Population Models: Construction, Analysis, and Interpretation 2nd edn (Sinauer Associates, 2001).

  50. 50.

    Goosse, H. et al. Description of the Earth system model of intermediate complexity LOVECLIM version 1.2. Geosci. Mod. Dev. 3, 603–633 (2010).

    Google Scholar 

  51. 51.

    Claussen, M. et al. Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim. Dynam. 18, 579–586 (2002).

    Google Scholar 

  52. 52.

    Timmermann, A. & Friedrich, T. Late Pleistocene climate drivers of early human migration. Nature 538, 92–95 (2016).

    CAS  PubMed  Google Scholar 

  53. 53.

    Friedrich, T., Timmermann, A., Tigchelaar, M., Elison Timm, O. & Ganopolski, A. Nonlinear climate sensitivity and its implications for future greenhouse warming. Sci. Adv. 2, e1501923 (2016).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Tigchelaar, M., Timmermann, A., Pollard, D., Friedrich, T. & Heinemann, M. Local insolation changes enhance Antarctic interglacials: insights from an 800,000-year ice sheet simulation with transient climate forcing. Earth Planet. Sci. Lett. 495, 69–78 (2018).

    CAS  Google Scholar 

  55. 55.

    Stockhecke, M. et al. Millennial to orbital-scale variations of drought intensity in the Eastern Mediterranean. Quat. Sci. Rev. 133, 77–95 (2016).

    Google Scholar 

  56. 56.

    Lorenz, D. J., Nieto-Lugilde, D., Blois, J. L., Fitzpatrick, M. C. & Williams, J. W. Downscaled and debiased climate simulations for North America from 21,000 years ago to 2100 ad. Sci. Data 3, 160048 (2016).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Wilby, R. L. & Wigley, T. M. L. Downscaling general circulation model output: a review of methods and limitations. Prog. Phys. Geogr. Earth Environ. 21, 530–548 (1997).

    Google Scholar 

  58. 58.

    Coe, M. J., Cumming, D. H. & Phillipson, J. Biomass and production of large African herbivores in relation to rainfall and primary production. Oecologia 22, 341–354 (1976).

    CAS  PubMed  Google Scholar 

  59. 59.

    Krausmann, F. et al. Long-term trajectories of the human appropriation of net primary production: lessons from six national case studies. Ecol. Econ. 77, 129–138 (2012).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Whittaker, R. H. & Likens, G. E. Primary production: the biosphere and man. Hum. Ecol. 1, 357–369 (1973).

    Google Scholar 

  61. 61.

    Phillipson, J. Rainfall, primary production and ‘carrying capacity’ of Tsavo National Park (East), Kenya. Afr. J. Ecol. 13, 171–201 (1975).

    Google Scholar 

  62. 62.

    Cao, M., Ma, S. & Han, C. Potential productivity and human carrying capacity of an agro-ecosystem: an analysis of food production potential of China. Agric. Syst. 47, 387–414 (1995).

    Google Scholar 

  63. 63.

    Williams, M. et al. Glacial and deglacial climatic patterns in Australia and surrounding regions from 35 000 to 10 000 years ago reconstructed from terrestrial and near-shore proxy data. Quat. Sci. Rev. 28, 2398–2419 (2009).

    Google Scholar 

  64. 64.

    Petherick, L. M., Moss, P. T. & McGowan, H. A. Climatic and environmental variability during the termination of the Last Glacial Stage in coastal eastern Australia: a review. Aust. J. Earth Sci. 58, 563–577 (2011).

    Google Scholar 

  65. 65.

    Williams, A. N., Ulm, S., Cook, A. R., Langley, M. C. & Collard, M. Human refugia in Australia during the Last Glacial Maximum and terminal Pleistocene: a geospatial analysis of the 25–12 ka Australian archaeological record. J. Archaeol. Sci. 40, 4612–4625 (2013).

    Google Scholar 

  66. 66.

    Williams, A. N. et al. A continental narrative: human settlement patterns and Australian climate change over the last 35,000 years. Quat. Sci. Rev. 123, 91–112 (2015).

    Google Scholar 

  67. 67.

    Ellerton, D., Shulmeister, J., Woodward, C. & Moss, P. Last Glacial Maximum and Last Glacial–Interglacial Transition pollen record from northern NSW, Australia: evidence for a humid late Last Glacial Maximum and dry deglaciation in parts of eastern Australia. J. Quat. Sci. 32, 717–728 (2017).

    Google Scholar 

  68. 68.

    Hesse, P. P. et al. Dramatic reduction in size of the lowland Macquarie River in response to Late Quaternary climate-driven hydrologic change. Quat. Res. 90, 360–379 (2018).

    Google Scholar 

  69. 69.

    Shulmeister, J., Kemp, J., Fitzsimmons, K. E. & Gontz, A. Constant wind regimes during the Last Glacial Maximum and Early Holocene: evidence from Little Llangothlin Lagoon, New England Tablelands, eastern Australia. Clim. Past 12, 1435–1444 (2016).

    Google Scholar 

  70. 70.

    Mueller, D. et al. Revisiting an arid LGM using fluvial archives: a luminescence chronology for palaeochannels of the Murrumbidgee River, south-eastern Australia. J. Quat. Sci. 33, 777–793 (2018).

    Google Scholar 

  71. 71.

    Hope, G. et al. History of vegetation and habitat change in the Austral-Asian region. Quat. Int. 118-119, 103–126 (2004).

    Google Scholar 

  72. 72.

    Johnson, B. J. et al. 65,000 years of vegetation change in central Australia and the Australian summer monsoon. Science 284, 1150–1152 (1999).

    CAS  PubMed  Google Scholar 

  73. 73.

    Fitzsimmons, K. E. et al. Late Quaternary palaeoenvironmental change in the Australian drylands. Quat. Sci. Rev. 74, 78–96 (2013).

    Google Scholar 

  74. 74.

    Barrows, T. T., Stone, J. O. & Fifield, L. K. Exposure ages for Pleistocene periglacial deposits in Australia. Quat. Sci. Rev. 23, 697–708 (2004).

    Google Scholar 

  75. 75.

    Barrows, T. T., Stone, J. O., Fifield, L. K. & Cresswell, R. G. The timing of the Last Glacial Maximum in Australia. Quat. Sci. Rev. 21, 159–173 (2002).

    Google Scholar 

  76. 76.

    Barrows, T. T., Stone, J. O., Fifield, L. K. & Cresswell, R. G. Late Pleistocene glaciation of the Kosciuszko Massif, Snowy Mountains, Australia. Quat. Res 55, 179–189 (2001).

    CAS  Google Scholar 

  77. 77.

    Reeves, J. M. et al. Climate variability over the last 35,000 years recorded in marine and terrestrial archives in the Australian region: an OZ-INTIMATE compilation. Quat. Sci. Rev. 74, 21–34 (2013).

    Google Scholar 

  78. 78.

    Petherick, L. et al. Climatic records over the past 30 ka from temperate Australia—a synthesis from the Oz-INTIMATE workgroup. Quat. Sci. Rev. 74, 58–77 (2013).

    Google Scholar 

  79. 79.

    Gautney, J. R. & Holliday, T. W. New estimations of habitable land area and human population size at the Last Glacial Maximum. J. Archaeol. Sci. 58, 103–112 (2015).

    Google Scholar 

  80. 80.

    Smith, M. The Archaeology of Australia’s Deserts (Cambridge Univ. Press, 2013).

  81. 81.

    Attenbrow, V. & Hiscock, P. Dates and demography: are radiometric dates a robust proxy for long-term prehistoric demographic change?Archaeol. Oceania 50, 30–36 (2015).

    Google Scholar 

  82. 82.

    Hiscock, P. & Attenbrow, V. Dates and demography? The need for caution in using radiometric dates as a robust proxy for prehistoric population change. Archaeol. Oceania 51, 218–219 (2016).

    Google Scholar 

  83. 83.

    Smith, M. The use of summed-probability plots of radiocarbon data in archaeology. Archaeol. Oceania 51, 214–215 (2016).

    Google Scholar 

  84. 84.

    Williams, A. N. & Ulm, S. Radiometric dates are a robust proxy for long-term demographic change: a comment on Attenbrow and Hiscock (2015). Archaeol. Oceania 51, 216–217 (2016).

    Google Scholar 

  85. 85.

    Bradshaw, C. J. A. et al. More analytical bite in estimating targets for shark harvest. Mar. Ecol. Prog. Ser. 488, 221–232 (2013).

    Google Scholar 

  86. 86.

    Frankham, R., Bradshaw, C. J. A. & Brook, B. W. Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Conserv. 170, 56–63 (2014).

    Google Scholar 

  87. 87.

    Traill, L. W., Bradshaw, C. J. A. & Brook, B. W. Minimum viable population size: a meta-analysis of 30 years of published estimates. Biol. Conserv. 139, 159–166 (2007).

    Google Scholar 

  88. 88.

    Traill, L. W., Brook, B. W., Frankham, R. & Bradshaw, C. J. A. Pragmatic population viability targets in a rapidly changing world. Biol. Conserv. 143, 28–34 (2010).

    Google Scholar 

  89. 89.

    Harpending, H. C. et al. Genetic traces of ancient demography. Proc. Natl Acad. Sci. USA 95, 1961–1967 (1998).

    CAS  PubMed  Google Scholar 

  90. 90.

    Murray-McIntosh, R. P., Scrimshaw, B. J., Hatfield, P. J. & Penny, D. Testing migration patterns and estimating founding population size in Polynesia by using human mtDNA sequences. Proc. Natl Acad. Sci. USA 95, 9047–9052 (1998).

    CAS  PubMed  Google Scholar 

  91. 91.

    Tenesa, A. et al. Recent human effective population size estimated from linkage disequilibrium. Genome Res. 17, 520–526 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Liu, H., Prugnolle, F., Manica, A. & Balloux, F. A geographically explicit genetic model of worldwide human-settlement history. Am. J. Hum. Gen. 79, 230–237 (2006).

    CAS  Google Scholar 

  93. 93.

    Zollner, P. A. & Lima, S. L. Search strategies for landscape-level interpatch movements. Ecology 80, 1019–1030 (1999).

    Google Scholar 

  94. 94.

    Eller, E., Hawks, J. & Relethford, J. H. Local extinction and recolonization, species effective population size, and modern human origins. Hum. Biol. 81, 805–824 (2009).

    PubMed  Google Scholar 

  95. 95.

    Wainwright, H. M., Finsterle, S., Jung, Y., Zhou, Q. & Birkholzer, J. T. Making sense of global sensitivity analyses. Comput. Geosci. 65, 84–94 (2014).

    Google Scholar 

  96. 96.

    Prowse, T. A. A. et al. An efficient protocol for the global sensitivity analysis of stochastic ecological models. Ecosphere 7, e01238 (2016).

    Google Scholar 

  97. 97.

    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    CAS  PubMed  Google Scholar 

  98. 98.

    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species distribution modeling. R package version 1.1-4 (2017).

Download references


This study was supported by the Australian Research Council through a Centre of Excellence grant (CE170100015) to R.G.R., S.U., M.I.B., Z.J., C.J.A.B. and L.S.W., fellowships to S.U. (FT120100656), M.I.B. (FL140100044), R.G.R. (FL130100116), Z.J. (FT150100138) and L.S.W. (FT180100407), and an Australian Government Research Training Program Award to K.N.

Author information




C.J.A.B. and F.S. designed the research. C.J.A.B. performed the analysis and sourced the data. C.J.A.B., F.S., S.U., A.N.W. and M.I.B. wrote the paper. All other co-authors contributed substantially to developing the manuscript.

Corresponding author

Correspondence to Corey J. A. Bradshaw.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Figs. 1–3 and references.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bradshaw, C.J.A., Ulm, S., Williams, A.N. et al. Minimum founding populations for the first peopling of Sahul. Nat Ecol Evol 3, 1057–1063 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing