Strontium and stable isotope evidence of human mobility strategies across the Last Glacial Maximum in southern Italy


Understanding the reason(s) behind changes in human mobility strategies through space and time is a major challenge in palaeoanthropology. Most of the time this is due to the lack of suitable temporal sequences of human skeletal specimens during critical climatic or cultural shifts. Here, we present temporal variations in the Sr isotope composition of 14 human deciduous teeth and the N and C stable isotope ratios of four human remains from the Grotta Paglicci site (Apulia, southern Italy). The specimens were recovered from the Gravettian and Epigravettian layers, across the Last Glacial Maximum, and dated between 31210–33103 and 18334–19860 yr cal bp (2σ). The two groups of individuals exhibit different 87Sr/86Sr ratios and, while the Gravettians are similar to the local macro-fauna in terms of Sr isotopic signal, the Epigravettians are shifted towards higher radiogenic Sr ratios. These data, together with stable isotopes, can be explained by the adoption of different mobility strategies between the two groups, with the Gravettians exploiting logistical mobility strategies and the Epigravettians applying residential mobility.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Sr isotope ratios of Grotta Paglicci human teeth, with relative stratigraphic positions.
Fig. 2: Bone collagen N and C stable isotopes of four humans from Grotta Paglicci (filled circles).
Fig. 3: Simplified geological map of the surroundings of Grotta Paglicci (location No. 7).
Fig. 4: Sr isotope ratios of human deciduous teeth from Grotta Paglicci.

Data availability

All data generated or analysed during this study are included in this paper and its Supplementary Information files.


  1. 1.

    Kelly, R. L. Mobility/sedentism: concepts, archaeological measures, and effects. Annu. Rev. Anthropol. 21, 43–66 (1992).

    Article  Google Scholar 

  2. 2.

    Hunter, L. M. Migration and environmental hazards. Popul. Environ. 26, 273–302 (2005).

    Article  Google Scholar 

  3. 3.

    Büntgen, U. et al. 2500 years of European climate variability and human susceptibility. Science 331, 578–583 (2011).

    Article  Google Scholar 

  4. 4.

    Kelley, C. P., Mohtadi, S., Cane, M. A., Seager, R. & Kushnir, Y. Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proc. Natl Acad. Sci. USA 112, 3241–3246 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Tallavaara, M., Luoto, M., Korhonen, N., Järvinen, H. & Seppä, H. Human population dynamics in Europe over the Last Glacial Maximum. Proc. Natl Acad. Sci. USA 112, 8232–8237 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Lamb, H. F. et al. 150,000-year palaeoclimate record from northern Ethiopia supports early, multiple dispersals of modern humans from Africa. Sci. Rep. 8, 1077 (2018).

    Article  Google Scholar 

  7. 7.

    Halsall, G. Barbarian Migrations and the Roman West 376–568 (Cambridge University Press, 2007).

  8. 8.

    Kuhn, S. L., Raichlen, D. A. & Clark, A. M. Y. E. What moves us? How mobility and movement are at the center of human evolution. Evol. Anthropol. 25, 86–97 (2016).

    Article  Google Scholar 

  9. 9.

    D’Andrea, W. J., Huang, Y., Fritz, S. C. & Anderson, N. J. Abrupt Holocene climate change as an important factor for human migration in west Greenland. Proc. Natl Acad. Sci. USA 108, 9765–9769 (2011).

    Article  Google Scholar 

  10. 10.

    Timmermann, A. & Friedrich, T. Late Pleistocene climate drivers of early human migration. Nature 538, 92–95 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Venkataraman, V. V., Kraft, T. S., Dominy, N. J. & Endicott, K. M. Hunter-gatherer residential mobility and the marginal value of rainforest patches. Proc. Natl Acad. Sci. USA 114, 3097–3102 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Binford, L. R. Willow smoke and dogs’ tails: hunter-gatherer settlement systems and archaeological site formation. Am. Antiq. 45, 4–20 (1980).

    Article  Google Scholar 

  13. 13.

    Pala, M. et al. Mitochondrial DNA signals of late glacial recolonization of Europe from Near Eastern refugia. Am. J. Hum. Genet. 90, 915–924 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Arrizabalaga, A., Calvo, A., Elorrieta, I., Tapia, J. & Tarriño, A. Where to and what for? Mobility patterns and the management of lithic resources by Gravettian hunter-gatherers in the Western Pyrenees. J. Anthropol. Res. 70, 233–261 (2014).

    Article  Google Scholar 

  16. 16.

    Aranguren, B. et al. Territorial exploitation in the Tyrrhenian Gravettian Italy: the case-study of Bilancino (Tuscany). Quat. Int. 359–360, 442–451 (2015).

    Article  Google Scholar 

  17. 17.

    Moreau, L. et al. Geochemical sourcing of flint artifacts from Western Belgium and the German Rhineland: testing hypotheses on Gravettian period mobility and raw material economy. Geoarchaeology 31, 229–243 (2016).

    Article  Google Scholar 

  18. 18.

    Tomasso, A. & Porraz, G. Hunter-gatherer mobility and embedded raw-material procurement strategies in the Mediterranean Upper Paleolithic. Evol. Anthropol. 25, 164–174 (2016).

    Article  Google Scholar 

  19. 19.

    Holt, B. M. Mobility in Upper Paleolithic and Mesolithic Europe: evidence from the lower limb. Am. J. Phys. Anthropol. 122, 200–215 (2003).

    Article  Google Scholar 

  20. 20.

    Villotte, S., Samsel, M. & Sparacello, V. The paleobiology of two adult skeletons from Baousso da Torre (Bausu da Ture) (Liguria, Italy): implications for Gravettian lifestyle. C. R. Palevol. 16, 462–473 (2017).

    Article  Google Scholar 

  21. 21.

    Villotte, S., Churchill, S. E., Dutour, O. J. & Henry-Gambier, D. Subsistence activities and the sexual division of labor in the European Upper Paleolithic and Mesolithic: evidence from upper limb enthesopathies. J. Hum. Evol. 59, 35–43 (2010).

    Article  Google Scholar 

  22. 22.

    Holt, B. M. & Formicola, V. Hunters of the Ice Age: the biology of Upper Paleolithic people. Am. J. Phys. Anthropol. 137(S47), 70–99 (2008).

    Article  Google Scholar 

  23. 23.

    Boscato, P. Faunes gravettiennes à grands mammifères de l’Italie du Sud: Grotta della Cala (Salerno) et Grotta Paglicci (Foggia). Paleo 19, 109–114 (2007).

    Google Scholar 

  24. 24.

    Tagliacozzo, A., Zeppieri, F., Fiore, I., Spinapolice, E. & Del Lucchese, A. Archaeozoological evidence of subsistence strategies during the Gravettian at Riparo Mochi (Balzi Rossi, Ventimiglia, Imperia – Italy). Quat. Int. 252, 142–154 (2012).

    Article  Google Scholar 

  25. 25.

    Richards, M. et al. Strontium isotope evidence of Neanderthal mobility at the site of Lakonis, Greece using laser-ablation PIMMS. J. Archaeol. Sci. 35, 1251–1256 (2008).

    Article  Google Scholar 

  26. 26.

    Willmes, M. et al. Improvement of laser ablation in situ micro-analysis to identify diagenetic alteration and measure strontium isotope ratios in fossil human teeth. J. Archaeol. Sci. 70, 102–116 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Copeland, S. R. et al. Strontium isotope evidence for landscape use by early hominins. Nature 474, 76–78 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    Balter, V., Braga, J., Télouk, P. & Thackeray, J. F. Evidence for dietary change but not landscape use in South African early hominins. Nature 489, 558–560 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    Lugli, F. et al. Suspected limited mobility of a Middle Pleistocene woman from southern Italy: strontium isotopes of a human deciduous tooth. Sci. Rep. 7, 8615 (2017).

    Article  Google Scholar 

  30. 30.

    Bentley, R. A. Strontium isotopes from the earth to the archaeological skeleton: a review. J. Archaeol. Method Theory 13, 135–187 (2006).

    Article  Google Scholar 

  31. 31.

    Ronchitelli, A. et al. When technology joins symbolic behaviour: the Gravettian burials at Grotta Paglicci (Rignano Garganico e Foggia e Southern Italy). Quat. Int. 359, 423–441 (2015).

    Article  Google Scholar 

  32. 32.

    Berto, C., Boscato, P., Boschin, F., Luzi, E. & Ronchitelli, A. Paleoenvironmental and paleoclimatic context during the Upper Palaeolithic (late Upper Pleistocene) in the Italian Peninsula. The small mammal record from Grotta Paglicci (Rignano Garganico, Foggia, Southern Italy). Quat. Sci. Rev. 168, 30–41 (2017).

    Article  Google Scholar 

  33. 33.

    Sommer, R. S. & Nadachowski, A. Glacial refugia of mammals in Europe: evidence from fossil records. Mammal. Rev. 36, 251–265 (2006).

    Article  Google Scholar 

  34. 34.

    Iacumin, P., Bocherens, H., Huertas, A. D., Mariotti, A. & Longinelli, A. A stable isotope study of fossil mammal remains from the Paglicci cave, Southern Italy: N and C as palaeoenvironmental indicators. Earth Planet. Sci. Lett. 148, 349–357 (1997).

    CAS  Article  Google Scholar 

  35. 35.

    Lugli, F., Cipriani, A., Peretto, C., Mazzucchelli, M. & Brunelli, D. In situ high spatial resolution 87Sr/86Sr ratio determination of two Middle Pleistocene (ca 580 ka) Stephanorhinus hundsheimensis teeth by LA–MC–ICP–MS. Int. J. Mass Spectrom. 412, 38–48 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Emery, M. V. et al. Mapping the origins of Imperial Roman workers ((1st–4th century CE) at Vagnari, Southern Italy, using 87Sr/86Sr and d18O variability. Am. J. Phys. Anthropol. 166, 837–850 (2018).

    Article  Google Scholar 

  37. 37.

    De Astis, G., Kempton, P. D., Peccerillo, A. & Wu, T. W. Trace element and isotopic variations from Mt. Vulture to Campanian volcanoes: constraints for slab detachment and mantle inflow beneath southern Italy. Contrib. Mineral Petrol 151, 331–351 (2006).

    CAS  Article  Google Scholar 

  38. 38.

    Schlüter, M., Steuber, T. & Parente, M. Chronostratigraphy of Campanian–Maastrichtian platform carbonates and rudist associations of Salento (Apulia, Italy). Cretac. Res. 29, 100–114 (2008).

    Article  Google Scholar 

  39. 39.

    Zampella, M. et al. Soil properties, strontium isotopic signatures and multi‐element profiles to authenticate the origin of vegetables from small‐scale regions: illustration with early potatoes from southern Italy. Rapid Commun. Mass Spectrom. 25, 2721–2731 (2011).

    CAS  Article  Google Scholar 

  40. 40.

    Vukosavljević, N. & Perhoč, Z. Lithic raw material procurement of the Late Epigravettian hunter-gatherers from Kopačina Cave (island of Brač, Dalmatia, Croatia). Quat. Int. 450, 164–185 (2017).

    Article  Google Scholar 

  41. 41.

    Montgomery, J., Evans, J. A. & Cooper, R. E. Resolving archaeological populations with Sr-isotope mixing models. Appl. Geochem. 22, 1502–1514 (2007).

    CAS  Article  Google Scholar 

  42. 42.

    Frei, K. M. & Price, T. D. Strontium isotopes and human mobility in prehistoric Denmark. Archaeol. Anthropol. Sci. 4, 103–114 (2012).

    Article  Google Scholar 

  43. 43.

    Binford, L. R. Dimensional analysis of behavior and site structure: learning from an Eskimo hunting stand. Am. Antiq. 43, 330–361 (1978).

    Article  Google Scholar 

  44. 44.

    Pellegrini, M. et al. Faunal migration in late-glacial central Italy: implications for human resource exploitation. Rapid Commun. Mass Spectrom. 22, 1714–1726 (2008).

    CAS  Article  Google Scholar 

  45. 45.

    Boschin, F., Boscato, P., Berto, C., Crezzini, J. & Ronchitelli, A. The palaeoecological meaning of macromammal remains from archaeological sites exemplified by the case study of Grotta Paglicci (Upper Palaeolithic, Southern Italy). Quat. Res. 90, 470–482 (2018).

    CAS  Article  Google Scholar 

  46. 46.

    Richards, M. P., Jacobi, R. M., Cook, J., Pettitt, P. B. & Stringer, C. B. Isotope evidence for the intensive use of marine foods by Late Upper Palaeolithic humans. J. Hum. Evol. 49, 390–394 (2005).

    CAS  Article  Google Scholar 

  47. 47.

    Richards, M. P. in The Evolution of Hominin Diets (eds Hublin, J. J. & Richards, M. P.) 251–257 (Springer, 2009).

  48. 48.

    Richards, M. P. & Trinkaus, E. Isotopic evidence for the diets of European Neanderthals and early modern humans. Proc. Natl Acad. Sci. USA 106, 16034–16039 (2009).

    CAS  Article  Google Scholar 

  49. 49.

    Tagliacozzo A. & Gala M. in Paglicci, l’Aurignaziano e il Gravettiano antico (ed. Di Cesnola, P.) 71–89 (Grenzi, 2004).

  50. 50.

    Mariotti Lippi, M., Foggi, B., Aranguren, B., Ronchitelli, A. & Revedin, A. Multistep food plant processing at Grotta Paglicci (Southern Italy) around 32,600 cal bp. Proc. Natl Acad. Sci. USA 112, 12075–12080 (2015).

    Article  Google Scholar 

  51. 51.

    Kelly R. L. The Foraging Spectrum: Diversity in Hunter-Gatherer Lifeways (Percheron Press, 2007).

  52. 52.

    Wall-Scheffler, C. M. & Myers, M. J. Reproductive costs for everyone: how female loads impact human mobility strategies. J. Hum. Evol. 64, 448–456 (2013).

    Article  Google Scholar 

  53. 53.

    Colonese, A. C. et al. Marine mollusc exploitation in Mediterranean prehistory: an overview. Quat. Int. 239, 86–103 (2011).

    Article  Google Scholar 

  54. 54.

    Milliken, S. Hunter‐gatherer land use in Late Glacial south‐east Italy. Oxford J. Archaeol. 17, 269–286 (1998).

    Article  Google Scholar 

  55. 55.

    Riel-Salvatore, J. & Barton, C. M. Late Pleistocene technology, economic behavior, and land-use dynamics in southern Italy. Am. Antiq. 69, 257–274 (2004).

    Article  Google Scholar 

  56. 56.

    Bentley, G. R. Hunter-gatherer energetics and fertility: a reassessment of the !Kung San. Hum. Ecol. 13, 79–107 (1985).

    Article  Google Scholar 

  57. 57.

    Andersen, K. K. et al. The Greenland ice core chronology 2005, 15–42 ka. Part 1: constructing the time scale. Quat. Sci. Rev. 25, 3246–3257 (2006).

    Article  Google Scholar 

  58. 58.

    Allen, J. R. et al. Rapid environmental changes in southern Europe during the last glacial period. Nature 400, 740–743 (1999).

    CAS  Article  Google Scholar 

  59. 59.

    Bartolomei, G., Broglio, A. & Palma di Cesnola, A. in La Fin des Temps Glaciaires en Europe (ed. de Sonneville-Bordes, D.) 297–324 (Editions du CNRS, 1979).

  60. 60.

    Borgia, V., Boschin, F. & Ronchitelli, A. Bone and antler working at Grotta Paglicci (Rignano Garganico, Foggia, Southern Italy). Quat. Int. 403, 23–39 (2016).

    Article  Google Scholar 

  61. 61.

    Brewster, C., Meiklejohn, C., von Cramon-Taubadel, N. & Pinhasi, R. Craniometric analysis of European Upper Palaeolithic and Mesolithic samples supports discontinuity at the last glacial maximum. Nat. Commun. 5, 4094 (2014).

    CAS  Article  Google Scholar 

  62. 62.

    Talamo, S. & Richards, M. A. Comparison of bone pretreatment methods for AMS dating of samples >30,000 bp. Radiocarbon 53, 443–449 (2011).

    CAS  Article  Google Scholar 

  63. 63.

    Van Klinken, G. J. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 26, 687–695 (1999).

    Article  Google Scholar 

  64. 64.

    Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971).

    CAS  Article  Google Scholar 

  65. 65.

    Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451 (1990).

    Article  Google Scholar 

  66. 66.

    Bocherens, H. et al. Isotopic biogeochemistry (13C, 15N) of fossil vertebrate collagen: implications for the study of fossil food web including Neanderthal Man. J. Hum. Evol. 20, 481–492 (1991).

    Article  Google Scholar 

  67. 67.

    Nelson, S. J. & Ash, M. M. Wheeler’s Dental Anatomy, Physiology, and Occlusion 9th edn (Elsevier, Saunders, 2010).

    Google Scholar 

  68. 68.

    Tafuri, M. A. et al. Life and death in Neolithic southeastern Italy: the strontium isotopic evidence. Int. J. Osteoarchaeol. 26, 1045–1057 (2016).

    Article  Google Scholar 

Download references


This project was funded by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement No. 724046—SUCCESS, awarded to S.B.). The Radiogenic Isotope Laboratory of the University of Modena and Reggio Emilia was funded through a grant from Programma Giovani Ricercatori Rita Levi Montalcini (to A.C.). We thank Soprintendenza Archeologia, Belle Arti e Paesaggio per le Province di Barletta-Andria-Trani e Foggia for supporting researches at Grotta Paglicci, and A. Palma di Cesnola for his scientific rigour in carrying out studies at Grotta Paglicci. The authors acknowledge S. Conti for providing geological maps of the Apulia region and A. Florenzano for valuable discussions of the paleoclimate record.

Author information




F.L., A.C. and S.B. conceived the study and designed the experiments. F.L. and A.C. performed the laboratory work and Sr isotope analyses. M.A.M, S.T., P.I. and M.P.R. designed and performed the stable isotope analyses. G.C., S.R., F. Boschin, P.B. and A.R. provided the samples. F. Badino, F. Boschin and P.B. reviewed palaeoclimate data. S.B., A.C. and A.R. supervised the work. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Federico Lugli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Supplementary Tables 1–5, Supplementary Text and Supplementary References

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lugli, F., Cipriani, A., Capecchi, G. et al. Strontium and stable isotope evidence of human mobility strategies across the Last Glacial Maximum in southern Italy. Nat Ecol Evol 3, 905–911 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing