Predator traits determine food-web architecture across ecosystems

Abstract

Predator–prey interactions in natural ecosystems generate complex food webs that have a simple universal body-size architecture where predators are systematically larger than their prey. Food-web theory shows that the highest predator–prey body-mass ratios found in natural food webs may be especially important because they create weak interactions with slow dynamics that stabilize communities against perturbations and maintain ecosystem functioning. Identifying these vital interactions in real communities typically requires arduous identification of interactions in complex food webs. Here, we overcome this obstacle by developing predator-trait models to predict average body-mass ratios based on a database comprising 290 food webs from freshwater, marine and terrestrial ecosystems across all continents. We analysed how species traits constrain body-size architecture by changing the slope of the predator–prey body-mass scaling. Across ecosystems, we found high body-mass ratios for predator groups with specific trait combinations including (1) small vertebrates and (2) large swimming or flying predators. Including the metabolic and movement types of predators increased the accuracy of predicting which species are engaged in high body-mass ratio interactions. We demonstrate that species traits explain striking patterns in the body-size architecture of natural food webs that underpin the stability and functioning of ecosystems, paving the way for community-level management of the most complex natural ecosystems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Global distribution of food webs.
Fig. 2: Overall scaling of predator and prey body mass assessed by four regression methods (n = 88,197).
Fig. 3: Species’ traits constrain the scaling of log10 predator body mass with log10 prey body mass (n = 88,197).
Fig. 4: Ecosystem characteristics constrain the scaling of log10 predator body mass with log10 prey body mass (n = 88,197).
Fig. 5: The predator-trait model predicts the target predators with the highest body-mass ratios across different ecosystem types (n = 7,296).

Data availability

The data supporting the findings of this study (GATEWAy 1.0) are available at the iDiv data repository41.

Code availability

The R code of the statistical analyses is available as a Supplement.

References

  1. 1.

    Brose, U. et al. Consumer-resource body-size relationships in natural food webs. Ecology 87, 2411–2417 (2006).

    Article  Google Scholar 

  2. 2.

    Barnes, C., Maxwell, D., Reuman, D. C. & Jennings, S. Global patterns in predator–prey size relationships reveal size dependency of trophic transfer efficiency. Ecology 91, 222–232 (2010).

    Article  Google Scholar 

  3. 3.

    Nakazawa, T., Ohba, S. & Ushio, M. Predator–prey body size relationships when predators can consume prey larger than themselves. Biol. Lett. 9, 20121193 (2013).

    Article  Google Scholar 

  4. 4.

    Woodward, G. et al. Body size in ecological networks. Trends Ecol. Evol. 20, 402–409 (2005).

    Article  Google Scholar 

  5. 5.

    Petchey, O. L., Beckerman, A. P., Riede, J. O. & Warren, P. H. Size, foraging, and food web structure. Proc. Natl Acad. Sci. USA 105, 4191–4196 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    Eklöf, A. et al. The dimensionality of ecological networks. Ecol. Lett. 16, 577–583 (2013).

    Article  Google Scholar 

  7. 7.

    Rall, B., Kalinkat, G., Ott, D., Vucic-Pestic, O. & Brose, U. Taxonomic versus allometric constraints on non-linear interaction strengths. Oikos 120, 483–492 (2011).

    Article  Google Scholar 

  8. 8.

    Emmerson, M. C. & Raffaelli, D. Predator–prey body size, interaction strength and the stability of a real food web. J. Anim. Ecol. 73, 399–409 (2004).

    Article  Google Scholar 

  9. 9.

    Reuman, D. C. & Cohen, J. E. Estimating relative energy fluxes using the food web, species abundance, and body size. Adv. Ecol. Res. 36, 137–182 (2005).

    Article  Google Scholar 

  10. 10.

    Schneider, F. D., Scheu, S. & Brose, U. Body mass constraints on feeding rates determine the consequences of predator loss. Ecol. Lett. 15, 436–443 (2012).

    Article  Google Scholar 

  11. 11.

    Brose, U. et al. Foraging theory predicts predator–prey energy fluxes. J. Anim. Ecol. 77, 1072–1078 (2008).

    CAS  Article  Google Scholar 

  12. 12.

    McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).

    CAS  Article  Google Scholar 

  13. 13.

    Brose, U., Williams, R. J. & Martinez, N. D. Allometric scaling enhances stability in complex food webs. Ecol. Lett. 9, 1228–1236 (2006).

    Article  Google Scholar 

  14. 14.

    Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269 (2006).

    CAS  Article  Google Scholar 

  15. 15.

    Otto, S. B., Rall, B. C. & Brose, U. Allometric degree distributions facilitate food-web stability. Nature 450, 1226–1229 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    Blanchard, J. L., Law, R., Castle, M. D. & Jennings, S. Coupled energy pathways and the resilience of size-structured food webs. Theor. Ecol. 4, 289–300 (2011).

    Article  Google Scholar 

  17. 17.

    Schneider, F. D., Brose, U., Rall, B. C. & Guill, C. Animal diversity and ecosystem functioning in dynamic food webs. Nat. Commun. 7, 12718 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Wang, S. & Brose, U. Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecol. Lett. 21, 9–20 (2018).

    Article  Google Scholar 

  19. 19.

    Binzer, A., Guill, C., Rall, B. C. & Brose, U. Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure. Glob. Change Biol. 22, 220–227 (2016).

    Article  Google Scholar 

  20. 20.

    Rall, B. C., Guill, C. & Brose, U. Food-web connectance and predator interference dampen the paradox of enrichment. Oikos 117, 202–213 (2008).

    Article  Google Scholar 

  21. 21.

    Brose, U. et al. Predicting the consequences of species loss using size-structured biodiversity approaches. Biol. Rev. Camb. Philos. Soc. 92, 684–697 (2017).

    Article  Google Scholar 

  22. 22.

    Cohen, J. E., Pimm, S. L., Yodzis, P. & Saldaña, J. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 62, 67–78 (1993).

    Article  Google Scholar 

  23. 23.

    Riede, J. O. et al. Stepping in Elton’s footprints: a general scaling model for body masses and trophic levels across ecosystems. Ecol. Lett. 14, 169–178 (2011).

    Article  Google Scholar 

  24. 24.

    Carbone, C., Codron, D., Scofield, C., Clauss, M. & Bielby, J. Geometric factors influencing the diet of vertebrate predators in marine and terrestrial environments. Ecol. Lett. 17, 1553–1559 (2014).

    Article  Google Scholar 

  25. 25.

    Naisbit, R. E., Kehrli, P., Rohr, R. P. & Bersier, L.-F. Phylogenetic signal in predator–prey body-size relationships. Ecology 92, 2183–2189 (2011).

    Article  Google Scholar 

  26. 26.

    Costa-Pereira, R., Araújo, M. S., Olivier, R., Souza, F. L. & Rudolf, V. H. W. Prey limitation drives variation in allometric scaling of predator–prey interactions. Am. Nat. 192, E139–E149 (2018).

    Article  Google Scholar 

  27. 27.

    Hirt, M. R., Jetz, W., Rall, B. C. & Brose, U. A general scaling law reveals why the largest animals are not the fastest. Nat. Ecol. Evol. 1, 1116–1122 (2017).

    Article  Google Scholar 

  28. 28.

    Pawar, S., Dell, A. I. & Savage, V. M. Dimensionality of consumer search space drives trophic interaction strengths. Nature 486, 485–489 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    Digel, C., Curtsdotter, A., Riede, J., Klarner, B. & Brose, U. Unravelling the complex structure of forest soil food webs: higher omnivory and more trophic levels. Oikos 123, 1157–1172 (2014).

    Article  Google Scholar 

  30. 30.

    Stan Development Team. RStan: the R interface to Stan. R package v.2.14.2 (2016).

  31. 31.

    Warton, D. I., Wright, I. J., Falster, D. S. & Westoby, M. Bivariate line-fitting methods for allometry. Biol. Rev. Camb. Philos. Soc. 81, 259–291 (2006).

    Article  Google Scholar 

  32. 32.

    Laigle, I. et al. Species traits as drivers of food web structure. Oikos 127, 316–326 (2018).

    Article  Google Scholar 

  33. 33.

    Tucker, M. A. & Rogers, T. L. Examining predator–prey body size, trophic level and body mass across marine and terrestrial mammals. Proc. Biol. Sci. 281, 20142103 (2014).

    Article  Google Scholar 

  34. 34.

    Ings, T. C. et al. Ecological networks: beyond food webs. J. Anim. Ecol. 78, 253–269 (2009).

    Article  Google Scholar 

  35. 35.

    Nakazawa, T., Ushio, M. & Kondoh, M. Scale dependence of predator–prey mass ratio: determinants and applications. Adv. Ecol. Res. 45, 269–302 (2011).

    Article  Google Scholar 

  36. 36.

    Wood, S. A., Russell, R., Hanson, D., Williams, R. J. & Dunne, J. A. Effects of spatial scale of sampling on food web structure. Ecol. Evol. 5, 3769–3782 (2015).

    Article  Google Scholar 

  37. 37.

    Dobashi, T., Iida, M. & Takemoto, K. Decomposing the effects of ocean environments on predator–prey body-size relationships in food webs. R. Soc. Open Sci. 5, 180707 (2018).

    Article  Google Scholar 

  38. 38.

    Gibert, J. P. & DeLong, J. P. Temperature alters food web body-size structure. Biol. Lett. 10, 20140473 (2014).

    Article  Google Scholar 

  39. 39.

    Lafferty, K. D., Dobson, A. P. & Kuris, A. M. Parasites dominate food web links. Proc. Natl Acad. Sci. USA 103, 11211–11216 (2006).

    CAS  Article  Google Scholar 

  40. 40.

    LaffertyMarcogliese, K. D. et al. Parasites in food webs: the ultimate missing links. Ecol. Lett. 11, 533–546 (2008).

    Article  Google Scholar 

  41. 41.

    Brose, U. et al. (2018) GlobAL daTabasE of traits and food Web Architecture (GATEWAy) v.1.0. (iDiv Data Repository, accessed 17 April 2019); https://doi.org/10.25829/iDiv.283-3-756

Download references

Acknowledgements

This study was supported by the German Centre for integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig funded by the German Research Foundation (grant no. FZT 118). R.T. was supported by an Australian Research Council Future Fellowship (no. FT110100957). A.C.I. was supported by the Alexander von Humboldt Foundation (grant ID 1156434). C.V. acknowledges a researcher position and strategic project (no. UID/MAR/04292/2013), funded by the Portuguese Science Foundation. We thank L. Rohde, F. Schwarzmüller and A. Dell for help in organizing a prior version of the database.

Author information

Affiliations

Authors

Contributions

U.B. developed the study design. U.B., P.A., A.D.B., L.-F.B., T.B., J.C.-C., E.C., M.D., C.D., A.D., A.A.V.F., K.F., B.G., C.G., J.H., M.R.H., U.J., M.J., S.K., O.M., M.M.M., E.L., K.L.-D., P.L., Y.L., C.M., N.D.M., V.M., C.M., S.A.N., E.J.O., D.O., J.P., D. Perkins, D. Piechnik, I.P., D.R., B.C.R., B.R., R.R., A.S., E.H.S., N.S., M.S.A.T., R.M.T., F.V., C.V., S.W., J.M.W., R.J.W., E.W., G.W. and A.C.I. gathered, contributed or organized data. U.B. and B.R. carried out statistical analyses. M.R.H. created the figures. U.B. and A.C.I. wrote the first draft of the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ulrich Brose.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Supplementary Tables 1–4, Supplementary Statistical Methods, Supplementary Metadata and Supplementary References

Reporting Summary

Supplementary Code

R code of the statistical analysis

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brose, U., Archambault, P., Barnes, A.D. et al. Predator traits determine food-web architecture across ecosystems. Nat Ecol Evol 3, 919–927 (2019). https://doi.org/10.1038/s41559-019-0899-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing