Abstract

It is generally assumed that deforestation affects a species consistently across space, however populations near their geographic range edge may exist at their niche limits and therefore be more sensitive to disturbance. We found that both within and across Atlantic Forest bird species, populations are more sensitive to deforestation when near their range edge. In fact, the negative effects of deforestation on bird occurrences switched to positive in the range core (>829 km), in line with Ellenberg’s rule. We show that the proportion of populations at their range core and edge varies across Brazil, suggesting deforestation effects on communities, and hence the most appropriate conservation action, also vary geographically.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

Bird occurrence datasets and derived datasets are available from https://osf.io/4pbzt/. We do not have rights to redistribute the underlying forest cover (SOS Mata Atlântica, Instituto Florestal) and range polygon (BirdLife) data, but these datasets are available for use under licence.

Code availability

Code used to perform the analysis is available from https://osf.io/4pbzt/.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

  2. 2.

    Hockey, P. A. R. & Curtis, O. E. Use of basic biological information for rapid prediction of the response of species to habitat loss. Conserv. Biol. 23, 64–71 (2009).

  3. 3.

    Henle, K., Davies, K. F., Kleyer, M., Margules, C. R. & Settele, J. Predictors of species sensitivity to fragmentation. Biodivers. Conserv. 13, 207–251 (2004).

  4. 4.

    Bregman, T. P., Şekercioğlu, Ç. H. & Tobias, J. A. Global patterns and predictors of bird species responses to forest fragmentation: implications for ecosystem function and conservation. Biol. Conserv. 169, 372–383 (2014).

  5. 5.

    Watson, J. E. M., Whittaker, R. J. & Freudenberger, D. Bird community responses to habitat fragmentation: how consistent are they across landscapes? J. Biogeogr. 32, 1353–1370 (2005).

  6. 6.

    Hatfield, J. H., Orme, C. D. L., Tobias, J. A. & Banks-Leite, C. Trait-based indicators of bird species sensitivity to habitat loss are effective within but not across data sets. Ecol. Appl. 28, 28–34 (2018).

  7. 7.

    Slatyer, R. A., Hirst, M. & Sexton, J. P. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16, 1104–1114 (2013).

  8. 8.

    Hargreaves, A. L., Samis, K. E. & Eckert, C. G. Are species’ range limits simply niche limits writ large? A review of transplant experiments beyond the range. Am. Nat. 183, 157–173 (2014).

  9. 9.

    Lee-Yaw, J. A. et al. A synthesis of transplant experiments and ecological niche models suggests that range limits are often niche limits. Ecol. Lett. 19, 710–722 (2016).

  10. 10.

    dos Anjos, L., Holt, R. D. & Robinson, S. K. Position in the distributional range and sensitivity to forest fragmentation in birds: a case history from the Atlantic forest, Brazil. Bird Conserv. Int. 20, 392–399 (2010).

  11. 11.

    Uezu, A. & Metzger, J. P. Vanishing bird species in the Atlantic Forest: relative importance of landscape configuration, forest structure and species characteristics. Biodivers. Conserv. 20, 3627–3643 (2011).

  12. 12.

    Doherty, P. F. J. F., Boulinier, T. & Nichols, J. D. Local extinction and turnover rates at the edge and interior of species’ ranges. Ann. Zool. Fenn. 40, 145–153 (2003).

  13. 13.

    Pérez-Tris, J., Carbonell, R. & Tellería, J. L. Abundance distribution, morphological variation and juvenile condition of robins, Erithacus rubecula (L.), in their Mediterranean range boundary. J. Biogeogr. 27, 879–888 (2000).

  14. 14.

    Julliard, R., Clavel, J., Devictor, V., Jiguet, F. F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).

  15. 15.

    Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).

  16. 16.

    Goerck, J. M. Patterns of rarity in the birds of the Atlantic Forest of Brazil. Conserv. Biol. 11, 112–118 (1997).

  17. 17.

    Orme, C. D. L. et al. Global patterns of geographic range size in birds. PLoS Biol. 4, e208 (2006).

  18. 18.

    Banks-Leite, C. et al. Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science. 345, 1041–1045 (2014).

  19. 19.

    Lindell, C. A. et al. Edge responses of tropical and temperate birds. Wilson J. Ornithol. 119, 205–220 (2007).

  20. 20.

    Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).

  21. 21.

    Hynes, H. B. N. The Biology of Polluted Waters (Liverpool Univ. Press, 1980).

  22. 22.

    Banks-Leite, C., Ewers, R. M., Kapos, V., Martensen, A. C. & Metzger, J. P. Comparing species and measures of landscape structure as indicators of conservation importance. J. Appl. Ecol. 48, 706–714 (2011).

  23. 23.

    Péron, G. & Altwegg, R. The abundant centre syndrome and species distributions: insights from closely related species pairs in southern Africa. Glob. Ecol. Biogeogr. 24, 215–225 (2015).

  24. 24.

    Bahn, V., J. O’Connor, R. & Krohn, W. B. Effect of dispersal at range edges on the structure of species ranges. Oikos 115, 89–96 (2006).

  25. 25.

    Crawley, M. J. Plant Ecology (Blackwell, 1997).

  26. 26.

    Marini, M. A. & Garcia, F. I. Bird conservation in Brazil. Conserv. Biol. 19, 665–671 (2005).

  27. 27.

    Brooks, T. & Balmford, A. Atlantic forest extinctions. Nature 380, 115 (1996).

  28. 28.

    SOS Mata Atlântica & Instituto Nacional de Pesquisas Espaciais. Atlas dos Remanescentes florestais da Mata Atlântica no Período 2013–2014 (2015); http://www.spsma.org.br

  29. 29.

    Instituto Florestal. Inventário florestal do Estado de São Paulo (2010); http://www.ambiente.sp.gov.br

  30. 30.

    Pebesma, E. sf: Simple Features for R. R package v.0.5-3 https://cran.r-project.org/package=sf (2017).

  31. 31.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017); http://www.R-project.org/

  32. 32.

    Hatfield, J. H., Orme, C. D. L. & Banks-Leite, C. Using functional connectivity to predict potential meta-population sizes in the Brazilian Atlantic Forest. Perspect. Ecol. Conserv. 16, 215–220 (2018).

  33. 33.

    Boscolo, D. & Metzger, J. Is bird incidence in Atlantic forest fragments influenced by landscape patterns at multiple scales?. Landsc. Ecol. 24, 907–918 (2009).

  34. 34.

    BirdLife International and NatureServe. Bird Species Distribution Maps of the World (2017); http://datazone.birdlife.org/

  35. 35.

    Banks-Leite, C. et al. Assessing the utility of statistical adjustments for imperfect detection in tropical conservation science. J. Appl. Ecol. 51, 849–859 (2014).

  36. 36.

    Gauch, H. G. Multivariate Analysis In Community Ecology (Cambridge Univ. Press, 1982).

  37. 37.

    Banks-Leite, C. & Cintra, R. The heterogeneity of Amazonian treefall gaps and bird community composition. Ecotropica 14, 1–13 (2008).

  38. 38.

    Morante-Filho, J. C., Faria, D., Mariano-Neto, E. & Rhodes, J. Birds in anthropogenic landscapes: the responses of ecological groups to forest loss in the Brazilian Atlantic Forest. PLoS ONE 10, e0128923 (2015).

  39. 39.

    Bates, D., Maechler, M. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

  40. 40.

    Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

Download references

Acknowledgements

We thank R. D. Holt, C. Rahbek, M. J. Crawley and R. Ewers for comments on the study and manuscript. This paper represents a contribution to the Grand Challenges in Ecosystems and the Environment Initiative of Imperial College. We acknowledge the use of the Imperial College Research Computing Service (https://doi.org/10.14469/hpc/2232). This research was supported by the Natural Environment Research Council (grant nos. NE/H016228/1, NE/K016393/1) and FAPESP (process no. 2012/51872-5).

Author information

Author notes

  1. These authors contributed equally: C. David L. Orme, Sarah Mayor.

Affiliations

  1. Department of Life Sciences, Imperial College London, Ascot, UK

    • C. David L. Orme
    • , Sarah Mayor
    • , Jack H. Hatfield
    • , Jason M. Tylianakis
    •  & Cristina Banks-Leite
  2. Department of Evolutionary Biology and Environmental Studies, University of Zurich, Irchel Campus, Zürich, Switzerland

    • Sarah Mayor
  3. Laboratório de Ornitologia e Bioacústica, Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil

    • Luiz dos Anjos
  4. SAVE Brazil—Birdlife International Afiiliate, São Paulo, Brazil

    • Pedro F. Develey
  5. Applied Conservation Ecology Lab, Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Ilhéus, Brazil

    • José Carlos Morante-Filho
  6. Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil

    • José Carlos Morante-Filho
  7. School of Biological Sciences, University of Canterbury, Christchurch, New Zealand

    • Jason M. Tylianakis
  8. Instituto de Pesquisas Ecológicas, Nazaré Paulista, Brazil

    • Alexandre Uezu

Authors

  1. Search for C. David L. Orme in:

  2. Search for Sarah Mayor in:

  3. Search for Luiz dos Anjos in:

  4. Search for Pedro F. Develey in:

  5. Search for Jack H. Hatfield in:

  6. Search for José Carlos Morante-Filho in:

  7. Search for Jason M. Tylianakis in:

  8. Search for Alexandre Uezu in:

  9. Search for Cristina Banks-Leite in:

Contributions

L.A., P.F.D., J.H.H., J.C.M., A.U. and C.B.L. collected the data. C.D.L.O., S.M., J.M.T. and C.B.L. analysed the data. C.D.L.O., S.M. and C.B.L. wrote the paper. All authors contributed to the text.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to C. David L. Orme or Cristina Banks-Leite.

Supplementary information

  1. Supplementary Information

    Supplementary Figs. 1–4 and Supplementary Tables 1–3

  2. Reporting Summary

  3. Supplementary Data 1

    List of species detected in each study and number of sites in which the species was detected.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41559-019-0889-z