Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Seasonal regulation of the lncRNA LDAIR modulates self-protective behaviours during the breeding season

Abstract

To cope with seasonal environmental changes, animals adapt their physiology and behaviour in response to photoperiod. However, the molecular mechanisms underlying these adaptive changes are not completely understood. Here, using genome-wide expression analysis, we show that an uncharacterized long noncoding RNA (lncRNA), LDAIR, is strongly regulated by photoperiod in Japanese medaka fish (Oryzias latipes). Numerous transcripts and signalling pathways are activated during the transition from short- to long-day conditions; however, LDAIR is one of the first genes to be induced and its expression shows a robust daily rhythm under long-day conditions. Transcriptome analysis of LDAIR knockout fish reveals that the LDAIR locus regulates a gene neighbourhood, including corticotropin releasing hormone receptor 2, which is involved in the stress response. Behavioural analysis of LDAIR knockout fish demonstrates that LDAIR affects self-protective behaviours under long-day conditions. Therefore, we propose that photoperiodic regulation of corticotropin releasing hormone receptor 2 by LDAIR modulates adaptive behaviours to seasonal environmental changes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Transcriptional landscape during the transition from short to long day.
Fig. 2: olvl28m13 is an lncRNA.
Fig. 3: The LDAIR locus regulates a gene neighbourhood.
Fig. 4: LDAIR knockout fish show decreased self-protective behaviours under long-day conditions.

Data availability

The microarray and RNA-Seq data are available at the NCBI Gene Expression Omnibus (accession no. GSE119905). All other data are available from the authors upon request.

References

  1. 1.

    Romero, L. M. Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen. Comp. Endocrinol. 128, 1–24 (2002).

    CAS  Article  Google Scholar 

  2. 2.

    Rowan, W. Relation of light to bird migration and developmental changes. Nature 115, 494–495 (1925).

    Article  Google Scholar 

  3. 3.

    Follett, B. K. & Sharp, P. J. Circadian rhythmicity in photoperiodically induced gonadotrophin release and gonadal growth in the quail. Nature 223, 968–971 (1969).

    CAS  Article  Google Scholar 

  4. 4.

    Egami, N. Effect of artificial photoperiodicity on time of oviposition in the fish, Oryzias latipes. Annot. Zool. Jpn 27, 57–62 (1954).

    Google Scholar 

  5. 5.

    Awaji, M. & Hanyu, I. Temperature-photoperiod conditions necessary to begin the spawning season in wild type medaka. Nippon Suisan Gakk. 55, 747 (1989).

    Article  Google Scholar 

  6. 6.

    Kasahara, M. et al. The medaka draft genome and insights into vertebrate genome evolution. Nature 447, 714–719 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    Ansai, S. & Kinoshita, M.Targeted mutagenesis using CRISPR/Cas system in medaka. Biol. Open 3, 362–371 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Shimmura, T. et al. Dynamic plasticity in phototransduction regulates seasonal changes in color perception. Nat. Commun. 8, 412 (2017).

    Article  Google Scholar 

  9. 9.

    Ichikawa, K. et al. Centromere evolution and CpG methylation during vertebrate speciation. Nat. Commun. 8, 1833 (2017).

    Article  Google Scholar 

  10. 10.

    Bale, T. L. et al. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat. Genet. 24, 410–414 (2000).

    CAS  Article  Google Scholar 

  11. 11.

    Kishimoto, T. et al. Deletion of Crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2. Nat. Genet. 24, 415–419 (2000).

    CAS  Article  Google Scholar 

  12. 12.

    Heo, J. B. & Sung, S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331, 76–79 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Salameh, A. et al. PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc. Natl Acad. Sci. USA 112, 8403–8408 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. S. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    CAS  Article  Google Scholar 

  15. 15.

    Hezroni, H. et al. Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep. 11, 1110–1122 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Engreitz, J. M. et al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 539, 452–455 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Joung, J. et al. Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature 548, 343–346 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Werner, M. S. et al. Chromatin-enriched lncRNAs can act as cell-type specific activators of proximal gene transcription. Nat. Struct. Mol. Biol. 24, 596–603 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Moore, I. T. & Jessop, T. S. Stress, reproduction, and adrenocortical modulation in amphibians and reptiles. Horm. Behav. 43, 39–47 (2003).

    CAS  Article  Google Scholar 

  20. 20.

    Wingfield, J. C. et al. Ecological bases of hormone–behavior interactions: the ‘emergency life history stage'. Am. Zool. 38, 191–206 (1998).

    CAS  Article  Google Scholar 

  21. 21.

    Balm, P. H. M. Stress Physiology in Animals (Blackwell, 1999).

  22. 22.

    Kysil, E. V. et al. Comparative analyses of zebrafish anxiety-like behavior using conflict-based novelty tests. Zebrafish 14, 197–208 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Goritz, C., Mauch, D. H. & Pfrieger, F. W. Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Mol. Cell. Neurosci. 29, 190–201 (2005).

    CAS  Article  Google Scholar 

  24. 24.

    Fester, L. et al. Cholesterol-promoted synaptogenesis requires the conversion of cholesterol to estradiol in the hippocampus. Hippocampus 19, 692–705 (2009).

    CAS  Article  Google Scholar 

  25. 25.

    Posse de Chaves, E. I., Rusiñol, A. E., Vance, D. E., Campenot, R. B. & Vance, J. E. Role of lipoproteins in the delivery of lipids to axons during axonal regeneration. J. Biol. Chem. 272, 30766–30773 (1997).

    Article  Google Scholar 

  26. 26.

    Minami, Y., Ode, K. L. & Ueda, H. R. Mammalian circadian clock: the roles of transcriptional repression and delay. Handb. Exp. Pharmacol 217, 359–377 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    Mracek, P. et al. Regulation of per and cry genes reveals a central role for the D-box enhancer in light-dependent gene expression. PLoS ONE 7, e51278 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    Seasholtz, A. F., Valverde, R. A. & Denver, R. J. Corticotropin-releasing hormone-binding protein: biochemistry and function from fishes to mammals. J. Endocrinol. 175, 89–97 (2002).

    CAS  Article  Google Scholar 

  29. 29.

    Timpl, P. et al. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat. Genet. 19, 162–166 (1998).

    CAS  Article  Google Scholar 

  30. 30.

    Smith, G. W. et al. Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 20, 1093–1102 (1998).

    CAS  Article  Google Scholar 

  31. 31.

    Wang, K. C. & Chang, H. Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43, 904–914 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    Guttman, M. & Rinn, J. L. Modular regulatory principles of large non-coding RNAs. Nature 482, 339–346 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    Yang, G., Lu, X. & Yuan, L. LncRNA: A link between RNA and cancer. Biochim. Biophys. Acta 1839, 1097–1109 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    Sun, Q., Hao, Q. & Prasanth, K. V. Nuclear long noncoding RNAs: key regulators of gene expression. Trends Genet. 34, 142–157 (2018).

    CAS  Article  Google Scholar 

  35. 35.

    Ding, J. et al. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc. Natl Acad. Sci. USA 109, 2654–2659 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    Wang, Y. et al. Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light. Proc. Natl Acad. Sci. USA 111, 10359–10364 (2014).

    CAS  Article  Google Scholar 

  37. 37.

    Wang, Y., Li, J., Deng, X.-W. & Zhu, D. Arabidopsis noncoding RNA modulates seedling greening during deetiolation. Sci. China Life Sci. 61, 199–203 (2018).

    CAS  Article  Google Scholar 

  38. 38.

    Henriques, R. et al. The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering. New Phytol. 216, 854–867 (2017).

    CAS  Article  Google Scholar 

  39. 39.

    Sánchez-Retuerta, C., Suaréz-López, P. & Henriques, R. Under a new light: regulation of light-dependent pathways by non-coding RNAs. Front. Plant Sci. 9, 962 (2018).

    Article  Google Scholar 

  40. 40.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  Article  Google Scholar 

  41. 41.

    Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    CAS  Article  Google Scholar 

  42. 42.

    Janich, P., Arpat, A. B., Castelo-Szekely, V., Lopes, M. & Gatfield, D. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames. Genome Res. 25, 1848–1859 (2015).

    CAS  Article  Google Scholar 

  43. 43.

    Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    CAS  Article  Google Scholar 

  44. 44.

    Kikuchi, Y., Hosono, K., Yamashita, J., Kawabata, Y. & Okubo, K. Glucocorticoid receptor exhibits sexually dimorphic expression in the medaka brain. Gen. Comp. Endocrinol. 223, 47–53 (2015).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank NBRP-Medaka (National Bio-Resource Project of MEXT, Japan) and the Data Integration and Analysis Facility for use of their facilities. We also thank M. Okubo, A. Akama, N. Baba and C. Kinoshita for technical assistance, and T.K. Tamai for comments on the manuscript. This work was supported in part by the JSPS KAKENHI Grant-in-Aid for Specially Promoted Research (grant no. 26000013), the Human Frontier Science Program (grant no. RGP0030/2015) and Grant-in-Aid for JSPS Fellows (grant no. 18J10936). The WPI-ITbM is supported by the World Premier International Research Center Initiative, MEXT, Japan.

Author information

Affiliations

Authors

Contributions

T.Y. conceived the research. T. Nakayama, T. Shimmura and T.Y. designed the research. T. Shimmura, T. Shimo, T. Senga and T.Y. performed the microarray analysis for the short-day to long-day transition experiments. T. Nakayama, K. Okimura and T.Y. performed the IPA. T. Nakayama and Y.F. performed the strand-specific RNA-Seq. T. Nakayama performed the Ribo-Seq, qPCR analysis, cortisol measurement and behavioural assays. T. Nakayama, T. Shimmura, Y.T., T. Shimo and M.N. generated and genotyped LDAIR knockout medaka. T. Nakayama and A.S. performed the microarray analysis for the experiment using the LDAIR knockout fish. T. Nishimura and M.T. provided the medaka microarrays. Y.K., K.N. and K. Okubo provided new methods and materials. T. Nakayama and T.Y. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Takashi Yoshimura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Supplementary Table 1

Reporting Summary

Supplementary Data

Supplementary Data 1: List of photoperiodically-regulated transcripts. Supplementary Data 2: List of differentially expressed transcripts between wild type (WT) and LDAIR knockout (KO) medaka.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakayama, T., Shimmura, T., Shinomiya, A. et al. Seasonal regulation of the lncRNA LDAIR modulates self-protective behaviours during the breeding season. Nat Ecol Evol 3, 845–852 (2019). https://doi.org/10.1038/s41559-019-0866-6

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing