The face is the most distinctive feature used to identify others. Modern humans have a short, retracted face beneath a large globular braincase that is distinctively different from that of our closest living relatives. The face is a skeletal complex formed by 14 individual bones that houses parts of the digestive, respiratory, visual and olfactory systems. A key to understanding the origin and evolution of the human face is analysis of the faces of extinct taxa in the hominin clade over the last 6 million years. Yet, as new fossils are recovered and the number of hominin species grows, the question of how and when the modern human face originated remains unclear. By examining key features of the facial skeleton, here we evaluate the evolutionary history of the modern human face in the context of its development, morphology and function, and suggest that its appearance is the result of a combination of biomechanical, physiological and social influences.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Du, S., Tao, Y. & Martinez, A. M. Compound facial expressions of emotion. Proc. Natl Acad. Sci. USA 111, E1454–E1462 (2014).

  2. 2.

    Cordero, D. R. et al. Cranial neural crest cells on the move: their roles in craniofacial development. Am. J. Med. Genet. A. 155A, 270–279 (2011).

  3. 3.

    Liu, F. et al. A genome-wide association study identifies five loci influencing facial morphology in Europeans. PLoS Genet. 8, e1002932 (2012).

  4. 4.

    Marcucio, R. S., Young, N. M., Hu, D. & Hallgrimsson, B. Mechanisms that underlie co-variation of the brain and face. Genesis 49, 177–189 (2011).

  5. 5.

    Ackermann, R. R. Ontogenetic integration of the hominoid face. J. Hum. Evol. 48, 175–197 (2005).

  6. 6.

    Lieberman, D.E. The Evolution of the Human Head (Harvard University Press, 2011).

  7. 7.

    Wilkins, A. Making Faces: The Evolutionary Origins of the Human Face (The Belknap Press of Harvard University Press, 2017).

  8. 8.

    Cobb, S. N. The facial skeleton of the chimpanzee-human last common ancestor. J. Anat. 212, 469–485 (2008).

  9. 9.

    Kimbel, W.H., Rak, Y. & Johanson, D.C. The Skull of Australopithecus afarensis (Oxford University Press, 2004).

  10. 10.

    Kimbel, W. H. & Rak, Y. Australopithecus sediba and the emergence of Homo: questionable evidence from the cranium of the juvenile holotype MH 1. J. Hum. Evol. 107, 94–106 (2017).

  11. 11.

    Balolia, K. L., Soligo, C. & Wood, B. Sagittal crest formation in great apes and gibbons. J. Anat. 230, 820–832 (2017).

  12. 12.

    Ravosa, M. J., Vinyard, C. J. & Hylander, W. L. Stressed out: masticatory forces and primate circumorbital form. Anat. Rec. 261, 173–175 (2000).

  13. 13.

    Villmoare, B. A. et al. Craniofacial modularity, character analysis, and the evolution of the premaxilla in early African hominins. J. Hum. Evol. 77, 143–154 (2014).

  14. 14.

    Bromage, T. G. Ontogeny of the early hominid face. J. Hum. Evol. 18, 751–773 (1989).

  15. 15.

    Lacruz, R. S. et al. Distinct growth of the nasomaxillary complex in Au. sediba. Sci. Rep. 5, 15175 (2015).

  16. 16.

    Lacruz, R. S. et al. Facial morphogenesis of the earliest europeans. PLoS One 8, e65199 (2013).

  17. 17.

    Suwa, G. et al. The Ardipithecus ramidus skull and its implications for hominid origins. Science 326, 68 e61–67 (2009).

  18. 18.

    Wynn, J. G. et al. Diet of Australopithecus afarensis from the Pliocene Hadar Formation, Ethiopia. Proc. Natl Acad. Sci. USA 110, 10495–10500 (2013).

  19. 19.

    Cerling, T. E. et al. Stable isotope-based diet reconstructions of Turkana Basin hominins. Proc. Natl Acad. Sci. USA 110, 10501–10506 (2013).

  20. 20.

    deMenocal, P. B. Plio-Pleistocene African climate. Science 270, 53–59 (1995).

  21. 21.

    Trauth, M. H. et al. High- and low-latitude forcing of Plio-Pleistocene East African climate and human evolution. J. Hum. Evol. 53, 475–486 (2007).

  22. 22.

    Ungar, P. S. & Sponheimer, M. The diets of early hominins. Science 334, 190–193 (2011).

  23. 23.

    Berger, L. R. et al. Australopithecus sediba: a new species of Homo-like australopith from South Africa. Science 328, 195–204 (2010).

  24. 24.

    Wood, B. & Aiello, L. C. Taxonomic and functional implications of mandibular scaling in early hominins. Am. J. Phys. Anthropol. 105, 523–538 (1998).

  25. 25.

    Ungar, P. S., Grine, F. E., Teaford, M. F. & El Zaatari, S. Dental microwear and diets of African early Homo. J. Hum. Evol. 50, 78–95 (2006).

  26. 26.

    Harmand, S. et al. 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature 521, 310–315 (2015).

  27. 27.

    Dominy, N., Vogel, E. R., Yeakel, J. D., Constantino, P. & Lucas, P. W. Mechanical properties of plant underground storage organs and implications for dietary models of early hominins. Evol. Biol. 35, 159–175 (2008).

  28. 28.

    Ferring, R. et al. Earliest human occupations at Dmanisi (Georgian Caucasus) dated to 1.85–1.78 Ma. Proc. Natl Aad. Sci. USA 108, 10432–10436 (2011).

  29. 29.

    Skoglund, P. & Mathieson, I. Ancient genomics of modern humans: the first decade. Annu. Rev. Genomics Hum. Genet. 19, 381–404 (2018).

  30. 30.

    Stringer, C. The origin and evolution of Homo sapiens. Phil. Trans. R. Soc. Lond. B 371, 20150237 (2016).

  31. 31.

    Hublin, J. J. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017).

  32. 32.

    Stringer, C. B. Some further notes on the morphology and dating of the Petralona hominid. J. Hum. Evol. 12, 731–742 (1983).

  33. 33.

    Balter, M. Paleoanthropology. RIP for a key Homo species? Science 345, 129 (2014).

  34. 34.

    Stringer, C. The status of Homo heidelbergensis (Schoetensack 1908). Evol. Anthropol. 21, 101–107 (2012).

  35. 35.

    Rightmire, G. P. Human evolution in the Middle Pleistocene: the role of Homo heidelbergensis. Evol. Anthropol. 6, 218–227 (1998).

  36. 36.

    Mounier, A. & Mirazón Lahr, M. Virtual ancestor reconstruction: revealing the ancestor of modern humans and Neandertals. J. Hum. Evol. 91, 57–72 (2016).

  37. 37.

    Maddux, S. D. & Franciscus, R. G. Allometric scaling of infraorbital surface topography in Homo. J. Hum. Evol. 56, 161–174 (2009).

  38. 38.

    Freidline, S. E., Gunz, P., Harvati, K. & Hublin, J. J. Evaluating developmental shape changes in Homo antecessor subadult facial morphology. J. Hum. Evol. 65, 404–423 (2013).

  39. 39.

    Dobson, S. D. Allometry of facial mobility in anthropoid primates: implications for the evolution of facial expression. Am. J. Phys. Anthropol. 138, 70–81 (2009).

  40. 40.

    Vialet, A. et al. Homo erectus from the Yunxian and Nankin Chinese sites: anthropological insights using 3D virtual imaging techniques. C. R. Palevol 9, 331–339 (2010).

  41. 41.

    Bermúdez de Castro, J. M. et al. The Atapuerca sites and their contribution to the knowledge of human evolution in Europe. Evol. Anthropol. 13, 25–41 (2004).

  42. 42.

    Bermúdez de Castro, J. M. et al. A hominid from the lower Pleistocene of Atapuerca, Spain: possible ancestor to Neandertals and modern humans. Science 276, 1392–1395 (1997).

  43. 43.

    Stringer, C. Modern human origins: progress and prospects. Phil. Trans. R. Soc. Lond. B 357, 563–579 (2002).

  44. 44.

    Bermúdez de Castro, J. M. & Martinón-Torres, M. Evolutionary interpretation of the modern human-like facial morphology of the Atapuerca Gran Dolina-TD6 hominins. Anthropol. Sci. 122, 149–155 (2014).

  45. 45.

    Lacruz, R. S. et al. Ontogeny of the maxilla in Neanderthals and their ancestors. Nat. Commun. 6, 8996 (2015).

  46. 46.

    Hajdinjak, M. et al. Reconstructing the genetic history of late Neanderthals. Nature 555, 652–656 (2018).

  47. 47.

    Arsuaga, J. L. et al. Neandertal roots: cranial and chronological evidence from Sima de los Huesos. Science 344, 1358–1363 (2014).

  48. 48.

    Meyer, M. et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531, 504–507 (2016).

  49. 49.

    Dirks, P. H. et al. The age of Homo naledi and associated sediments in the Rising Star Cave, South Africa. eLife 6, e24231 (2017).

  50. 50.

    Berger, L. R. et al. Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa. eLife 4, 09560 (2015).

  51. 51.

    Groves, C. The origins of modern humans. Interdiscipl. Sci. Rev. 19, 23–34 (1994).

  52. 52.

    Cieri, R. L., Churchill, S. E., Franciscus, R. G., Tan, J. & Hare, B. Craniofacial feminization, social tolerance, and the origins of behavioral modernity. Curr. Anthropol. 55, 419–443 (2014).

  53. 53.

    Ledogar, J. A. et al. Human feeding biomechanics: performance, variation, and functional constraints. PeerJ 4, e2242 (2016).

  54. 54.

    Smith, H. F. The role of genetic drift in shaping modern human cranial evolution: a test using microevolutionary modeling. Int. J. Evol. Biol. 2011, 145262 (2011).

  55. 55.

    Lieberman, D. E. Speculations about the selective basis for modern human craniofacial form. Evol. Anthropol. 17, 55–68 (2008).

  56. 56.

    García-Martínez, D. et al. Ribcage measurements indicate greater lung capacity in Neanderthals and Lower Pleistocene hominins compared to modern humans. Commun. Biol. 1, 117 (2018).

  57. 57.

    Churchill, S.E. in Neanderthals Revisited: New Approaches and Perspectives (eds. Havarti, K. & Harrison, T.) 113–133 (Springer, 2006).

  58. 58.

    Wroe, S. et al. Computer simulations show that Neanderthal facial morphology represents adaptation to cold and high energy demands, but not heavy biting. Proc. R. Soc. Lond. B 285, 20180085 (2018).

  59. 59.

    Rak, Y. The Neanderthal: a new look at an old face. J. Hum. Evol. 15, 151–164 (1986).

  60. 60.

    Demes, B. Another look at an old face: biomechanics of the Neandertal facial skeleton reconsidered. J. Hum. Evol. 16, 297–303 (1987).

  61. 61.

    Holton, N. E., Yokley, T. R., Froehle, A. W. & Southard, T. E. Ontogenetic scaling of the human nose in a longitudinal sample: implications for genus Homo facial evolution. Am. J. Phys. Anthropol. 153, 52–60 (2014).

  62. 62.

    Bastir, M. & Rosas, A. Cranial base topology and basic trends in the facial evolution of Homo. J. Hum. Evol. 91, 26–35 (2016).

  63. 63.

    Rosas, A., Bastir, M., Martinez-Maza, C., Garcia-Tabernero, A. & Lalueza-Fox, C. in Neanderthals Revisited: New Approaches and Perspectives (eds. Havarti, K. & Harrison, T.) 37–70 (Springer, 2006).

  64. 64.

    Bastir, M. in Biological Theory (ed. Schwartz, J.) 205–227 (in press).

  65. 65.

    Gröning, F., Liu, J., Fagan, M. J. & O’Higgins, P. Why do humans have chins? Testing the mechanical significance of modern human symphyseal morphology with finite element analysis. Am. J. Phys. Anthropol. 144, 593–606 (2011).

  66. 66.

    Pampush, J. D. & Daegling, D. J. The enduring puzzle of the human chin. Evol. Anthropol. 25, 20–35 (2016).

  67. 67.

    Moss, M. L. & Young, R. W. A functional approach to craniology. Am. J. Phys. Anthropol. 18, 281–292 (1960).

  68. 68.

    Russell, M. D. et al. The supraorbital torus: "A Most Remarkable Peculiarity". Curr. Anthropol. 26, 337–360 (1985).

  69. 69.

    von Cramon-Taubadel, N. Global human mandibular variation reflects differences in agricultural and hunter-gatherer subsistence strategies. Proc. Natl Acad. Sci. USA 108, 19546–19551 (2011).

  70. 70.

    Noback, M. L. & Harvati, K. The contribution of subsistence to global human cranial variation. J. Hum. Evol. 80, 34–50 (2015).

  71. 71.

    Wroe, S., Ferrara, T. L., McHenry, C. R., Curnoe, D. & Chamoli, U. The craniomandibular mechanics of being human. Proc. R. Soc. Lond. B 277, 3579–3586 (2010).

  72. 72.

    Anton, S. C. Neandertals and the anterior dental loading hypothesis: a biomechanical evaluation of bite force production. Kroeber Anthropological Society Papers 71–72, 67–76 (1990).

  73. 73.

    O’Connor, C. F., Franciscus, R. G. & Holton, N. E. Bite force production capability and efficiency in Neandertals and modern humans. Am. J. Phys. Anthropol. 127, 129–151 (2005).

  74. 74.

    Godinho, R. M. et al. The biting performance of Homo sapiens and Homo heidelbergensis. J. Hum. Evol. 118, 56–71 (2018).

  75. 75.

    Harvati, K. The Neanderthal taxonomic position: models of intra- and inter-specific craniofacial variation. J. Hum. Evol. 44, 107–132 (2003).

  76. 76.

    Harvati, K., Frost, S. R. & McNulty, K. P. Neanderthal taxonomy reconsidered: implications of 3D primate models of intra- and interspecific differences. Proc. Natl Acad. Sci. USA 101, 1147–1152 (2004).

  77. 77.

    Harvati, K.H. in Handbook of Paleoanthropology 2243–2279 (Springer, 2014).

  78. 78.

    Dean, M. C. Another look at the nose and the functional significance of the face and nasal mucous membrane for cooling the brain in fossil hominids. J. Hum. Evol. 17, 715–718 (1988).

  79. 79.

    Stewart, J. R. & Stringer, C. B. Human evolution out of Africa: the role of refugia and climate change. Science 335, 1317–1321 (2012).

  80. 80.

    von Cramon-Taubadel, N. Evolutionary insights into global patterns of human cranial diversity: population history, climatic and dietary effects. J. Anthropol. Sci. 92, 43–77 (2014).

  81. 81.

    Harvati, K. & Weaver, T. D. Human cranial anatomy and the differential preservation of population history and climate signatures. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 288, 1225–1233 (2006).

  82. 82.

    Hubbe, M., Hanihara, T. & Harvati, K. Climate signatures in the morphological differentiation of worldwide modern human populations. Anat. Rec. (Hoboken) 292, 1720–1733 (2009).

  83. 83.

    Reyes-Centeno, H., Ghirotto, S. & Harvati, K. Genomic validation of the differential preservation of population history in the human cranium. Am. J. Phys. Anthropol. 162, 170–179 (2017).

  84. 84.

    Evteev, A., Cardini, A. L., Morozova, I. & O’Higgins, P. Extreme climate, rather than population history, explains mid-facial morphology of Northern Asians. Am. J. Phys. Anthropol. 153, 449–462 (2014).

  85. 85.

    Noback, M. L., Harvati, K. & Spoor, F. Climate-related variation of the human nasal cavity. Am. J. Phys. Anthropol. 145, 599–614 (2011).

  86. 86.

    Lieberman, D. E., McBratney, B. M. & Krovitz, G. The evolution and development of cranial form in Homo sapiens. Proc. Natl Acad. Sci. USA 99, 1134–1139 (2002).

  87. 87.

    Godinho, R. M., Spikins, P. & O’Higgins, P. Supraorbital morphology and social dynamics in human evolution. Nat. Ecol. Evol. 2, 956–961 (2018).

  88. 88.

    Strait, D. S. et al. Viewpoints: diet and dietary adaptations in early hominins: the hard food perspective. Am. J. Phys. Anthropol. 151, 339–355 (2013).

  89. 89.

    Daegling, D. J. et al. Viewpoints: feeding mechanics, diet, and dietary adaptations in early hominins. Am. J. Phys. Anthropol. 151, 356–371 (2013).

  90. 90.

    Grine, F. E. & Daegling, D. J. Functional morphology, biomechanics and the retrodiction of early hominin diets. C. R. Palevol 16, 613–631 (2017).

  91. 91.

    Wood, B.A. & Boyle, E.K. Hominin taxic diversity: fact or fantasy? Am. J. Phys. Anthropol. 159, S37–S78 (2016).

  92. 92.

    Conroy, G. C., Jolly, C. J., Cramer, D. & Kalb, J. E. Newly discovered fossil hominid skull from the Afar depression, Ethiopia. Nature 276, 67 (1978).

  93. 93.

    Liu, W., Zhang, Y. & Wu, X. Middle Pleistocene human cranium from Tangshan (Nanjing), Southeast China: a new reconstruction and comparisons with Homo erectus from Eurasia and Africa. Am. J. Phys. Anthropol. 127, 253–262 (2005).

  94. 94.

    Stringer, C. & Galway-Witham, J. Palaeoanthropology: on the origin of our species. Nature 546, 212 (2017).

  95. 95.

    White, T. D. et al. Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature 423, 742 (2003).

  96. 96.

    Havarti, K. & Hublin, J.-J. in Modern Origins: A North African Perspective (eds. Havarti, K. & McPherron, S.J.P.) 179–188 (Springer, 2012).

  97. 97.

    Hallgrimsson, B., Lieberman, D. E., Young, N. M., Parsons, T. & Wat, S. Evolution of covariance in the mammalian skull. Novartis Found. Symp. 284, 164–185 (2007).

  98. 98.

    Cheverud, J. M. Genetics and analysis of quantitative traits. Am. J. Phys. Anthropol. 108, 375–376 (1999).

  99. 99.

    Lieberman, D. E., Krovitz, G. E. & McBratney-Owen, B. Testing hypotheses about tinkering in the fossil record: the case of the human skull. J. Exp. Zool. B Mol. Dev. Evol. 302, 284–301 (2004).

  100. 100.

    Enlow, D. H. Facial growth and development. Int. J. Oral Myol. 5, 7–10 (1979).

  101. 101.

    Kurihara, S., Enlow, D. H. & Rangel, R. D. Remodeling reversals in anterior parts of the human mandible and maxilla. Angle Orthod. 50, 98–106 (1980).

Download references


We thank the Fundación Ramón Areces, Spain, for funding a symposium organized by R.S.L. and J.L.A., entitled the Evolutionary History of the Human Face. C.S. is supported by the Calleva Foundation and the Human Origins Research Fund of the Natural History Museum, London (UK). K.H. is supported by the Deutsche Forschungsgemeinschaft (DFG FOR 2237) and the European Research Council (ERC CoG 724703). B.W. acknowledges the support of the GW Provost’s Signature Program. J.L.A. is supported by the Ministerio de Economia y Competitividad of the Government of Spain, project No CGL2015-65387-C3-2-P (MINECO/FEDER). We also thank P. Wynne for the drawings shown in Figs. 1 and 3, and J. Warshaw for help with Fig. 2. Drawing shown in Fig. 4 is by E. Saiz. Finally, to all of our colleagues whose important work may not be have been included here due to space limitations, we apologise.

Author information


  1. Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA

    • Rodrigo S. Lacruz
  2. NYCEP, New York, NY, USA

    • Rodrigo S. Lacruz
    •  & Katerina Harvati
  3. Centre for Human Evolution (CHER), Department of Earth Sciences, Natural History Museum, London, UK

    • Chris B. Stringer
  4. Institute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA

    • William H. Kimbel
  5. Center for the Advanced Study of Human Paleobiology, George Washington University, Washington DC, USA

    • Bernard Wood
  6. Paleoanthropology work group, Senckenberg Centre for Human Evolution and Palaeoenvironment, and DFG Centre for Advanced Studies ‘Words, Bones, Genes, Tools’, Eberhard Karls Universität Tübingen, Tübingen, Germany

    • Katerina Harvati
  7. Department of Archaeology and Hull York Medical School, University of York, York, UK

    • Paul O’Higgins
  8. Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, USA

    • Timothy G. Bromage
  9. Universidad Complutense de Madrid-Instituto Carlos III (UCMISCIII), Centro de Investigación de la Evolución y Comportamiento Humanos, Madrid, Spain

    • Juan-Luis Arsuaga


  1. Search for Rodrigo S. Lacruz in:

  2. Search for Chris B. Stringer in:

  3. Search for William H. Kimbel in:

  4. Search for Bernard Wood in:

  5. Search for Katerina Harvati in:

  6. Search for Paul O’Higgins in:

  7. Search for Timothy G. Bromage in:

  8. Search for Juan-Luis Arsuaga in:


Author order reflects the relative size of the contributions made. All authors included contributed to the development of the study and wrote the paper.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Rodrigo S. Lacruz.

About this article

Publication history




Issue Date