Evidence for increased hominid diversity in the Early to Middle Pleistocene of Indonesia

Abstract

Since the first discovery of Pithecanthropus (Homo) erectus by E. Dubois at Trinil in 1891, over 200 hominid dentognathic remains have been collected from the Early to Middle Pleistocene deposits of Java, Indonesia, forming the largest palaeoanthropological collection in South East Asia. Most of these fossils are currently attributed to H. erectus. However, because of the substantial morphological and metric variation in the Indonesian assemblage, some robust specimens, such as the partial mandibles Sangiran 5 and Sangiran 6a, were formerly variably allocated to other taxa (Meganthropus palaeojavanicus, Pithecanthropus dubius, Pongo sp.). To resolve the taxonomic uncertainty surrounding these and other contentious Indonesian hominid specimens, we used occlusal fingerprint analysis (OFA) to reconstruct their chewing kinematics; we also used various morphometric approaches based on microtomography to examine the internal dental structures. Our results confirm the presence of Meganthropus as a Pleistocene Indonesian hominid distinct from Pongo, Gigantopithecus and Homo, and further reveal that Dubois’s H. erectus paratype molars from 1891 are not hominin (human lineage), but instead are more likely to belong to Meganthropus.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Virtual rendering of the Indonesian hominid teeth examined for taxonomic reassessment.
Fig. 2: OFA.
Fig. 3: Enamel thickness cartographies.
Fig. 4: Molar crown-root proportions.
Fig. 5: Geometric morphometric analyses of the EDJ and pulp chamber.
Fig. 6: Geometric morphometric analyses of the EDJ and pulp chamber in non-Homo hominids.

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary information files.

References

  1. 1.

    Voris, H. K. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J. Biogeogr. 27, 1153–1167 (2000).

    Article  Google Scholar 

  2. 2.

    Larick, R. & Ciochon, R. L. Early hominin biogeography in island Southeast Asia. Evol. Anthropol. 24, 185–213 (2015).

    Article  Google Scholar 

  3. 3.

    Antón, S. C., Spoor, F., Fellmann, C. D. & Swisher, C. C. in Handbook of Paleoanthropology Vol. 3 (eds Henke, W. & Tattersall, I.) 1655–1695 (Springer, 2007).

  4. 4.

    Ciochon, R. L. in Out of Africa I: the First Hominin Colonization of Eurasia (eds Fleagle, J. G. et al.) 111–126 (Springer, 2010).

  5. 5.

    Harrison, T., Jin, C., Zhang, Y., Wang, Y. & Zhu, M. Fossil Pongo from the early Pleistocene Gigantopithecus fauna of Chongzuo, Guangxi, Southern China. Quat. Int. 354, 59–67 (2014).

    Article  Google Scholar 

  6. 6.

    Zhang, Y. & Harrison, T. Gigantopithecus blacki: a giant ape from the Pleistocene of Asia revisited. Am. J. Phys. Anthropol. 162, 153–177 (2017).

    Article  Google Scholar 

  7. 7.

    Ciochon, R. L. The mystery ape of Pleistocene Asia. Nature 459, 910–911 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    Ibrahim, Y. Kh. et al. First discovery of Pleistocene orangutan (Pongo sp.) fossils in Peninsular Malaysia: biogeographic and paleoenvironmental implications. J. Hum. Evol. 65, 770–797 (2013).

    Article  Google Scholar 

  9. 9.

    Kaifu, Y., Aziz, F. & Baba, H. New evidence of the existence of Pongo in the Early/Middle Pleistocene Java. In Proc. International Symposium on Geological Museum (eds Sudijono, J. & Aziz, F.) 55–60 (Geological Research and Development Centre, 2001).

  10. 10.

    Smith, T. M. et al. Taxonomic assessment of the Trinil molars using non-destructive 3D structural and development analysis. PaleoAnthropol. 2009, 117–129 (2009).

    Google Scholar 

  11. 11.

    Smith, T. M. et al. Disentangling isolated dental remains of Asian Pleistocene hominins and pongines. PLoS ONE 13, e0204737 (2018).

    Article  Google Scholar 

  12. 12.

    Dubois, E. Pithecanthropus erectus, eine menschenaehnliche Ubergangsform aus Java (Landesdruckerei, 1894).

  13. 13.

    Tyler, D. E. Sangiran 5, (“Pithecanthropus dubius”), Homo erectus, “Meganthropus”, or Pongo? Hum. Evol. 18, 229–241 (2003).

    Article  Google Scholar 

  14. 14.

    von Koenigswald, G. H. R. Fossil hominids of the Lower Pleistocene of Java: Trinil. In Proc. 18th International Geological Congress 59–61 (International Geological Conference, 1950).

  15. 15.

    Weidenreich, F. Giant early man from Java and South China. Anthropol. Pap. Am. Mus. Nat. Hist. 40, 1–134 (1945).

    Google Scholar 

  16. 16.

    Kaifu, Y. et al. Taxonomic affinities and evolutionary history of the Early Pleistocene hominids of Java: dentognathic evidence. Am. J. Phys. Anthropol. 128, 709–726 (2005).

    Article  Google Scholar 

  17. 17.

    Kaifu, Y., Aziz, F. & Baba, H. Hominin mandibular remains from Sangiran: 1952–1986 collection. Am. J. Phys. Anthropol. 128, 497–519 (2005).

    Article  Google Scholar 

  18. 18.

    Schwartz, J. H. & Tattersall, I. Defining the genus Homo. Science 349, 931–932 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Grimaud-Hervé, D. & Widianto, H. in Origine des peuplements et chronologie des cultures paléolithiques dans le Sud-Est asiatique (eds Sémah, F. et al.) 331–358 (Semenanjung, 2001).

  20. 20.

    Begun, D. R. A Companion to Paleoanthropology (Wiley-Blackwell, 2013).

  21. 21.

    Fleagle, J. G. Primate Adaptation and Evolution 3rd edn (Elsevier, 2013).

  22. 22.

    Teaford, M. F. & Ungar, P. S. in Handbook of Palaeoanthropology 2nd edn (eds Henke, W. & Tattersall, I.) 1465–1494 (Springer, 2015).

  23. 23.

    Kullmer, O. et al. Occlusal fingerprint analysis: quantification of tooth wear pattern. Am. J. Phys. Anthropol. 139, 600–605 (2009).

    Article  Google Scholar 

  24. 24.

    Olejniczak, A. J. et al. Molar enamel thickness and dentine horn height in Gigantopithecus blacki. Am. J. Phys. Anthropol. 135, 85–91 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    Fiorenza, L., Nguyen, N. H. & Benazzi, S. Stress distribution and molar macrowear in Pongo pygmaeus: a new approach through finite element and occlusal fingerprint analyses. Hum. Evol. 30, 215–226 (2015).

    Google Scholar 

  26. 26.

    Zanolli, C., Grine, F. E., Kullmer, O., Schrenk, F. & Macchiarelli, R. The early Pleistocene deciduous hominid molar FS-72 from the Sangiran Dome of Java, Indonesia: a taxonomic reappraisal based on its comparative endostructural characterization. Am. J. Phys. Anthropol. 157, 666–674 (2015).

    Article  Google Scholar 

  27. 27.

    Smith, T. M. et al. Variation in enamel thickness within the genus Homo. J. Hum. Evol. 62, 395–411 (2012).

    Article  Google Scholar 

  28. 28.

    Kupczik, K., Olejniczak, A. J., Skinner, M. M. & Hublin, J. J. Molar crown and root size relationship in anthropoid primates. Front. Oral Biol. 13, 16–22 (2009).

    Article  Google Scholar 

  29. 29.

    Skinner, M. M. et al. Dental trait expression at the enamel-dentine junction of lower molars in extant and fossil hominoids. J. Hum. Evol. 54, 173–186 (2008).

    Article  Google Scholar 

  30. 30.

    Schwartz, J. in Una vida dedicada a la ciencia y al conocimiento de los primeros europeos (ed. Ribot, R.) 93–110 (Publicaciones Diputación de Granada, 2016).

  31. 31.

    Simons, E. L. & Chopra, S. R. K. Gigantopithecus (Pongidae, Hominoidea) a new species from North India. Postilla 138, 1–18 (1969).

    Google Scholar 

  32. 32.

    Wang, W. New discoveries of Gigantopithecus blacki teeth from Chuifeng Cave in the Bubing Basin, Guangxi, south China. J. Hum. Evol. 57, 229–240 (2009).

    Article  Google Scholar 

  33. 33.

    Koufos, G. D. & de Bonis, L. New material of Ouranopithecus macedoniensis from late Miocene of Macedonia (Greece) and study of its dental attrition. Géobios 39, 223–243 (2006).

    Article  Google Scholar 

  34. 34.

    Xu, Q. & Lu, Q. Lufengpithecus lufengensis: an Early Member of Hominidae (Science Press, 2007).

  35. 35.

    Smith, T. M. et al. Dental ontogeny in Pliocene and early Pleistocene hominins. PLoS ONE 10, e0118118 (2015).

    Article  Google Scholar 

  36. 36.

    Smith, T. M. Dental development in living and fossil orangutans. J. Hum. Evol. 94, 92–105 (2016).

    Article  Google Scholar 

  37. 37.

    Mahoney, P., Smith, T. M., Schwartz, G. T., Dean, C. & Kelley, J. Molar crown formation in the Late Miocene Asian hominoids, Sivapithecus parvada and Sivapithecus indicus. J. Hum. Evol. 53, 61–68 (2007).

    Article  Google Scholar 

  38. 38.

    Schwartz, G. T., Liu, W. & Zheng, L. Preliminary investigation of dental microstructure in the Yuanmou hominoid (Lufengpithecus hudienensis), Yunnan Province, China. J. Hum. Evol. 44, 189–202 (2003).

    Article  Google Scholar 

  39. 39.

    Olejniczak, A. J. et al. Three-dimensional molar enamel distribution and thickness in Australopithecus and Paranthropus. Biol. Lett. 4, 406–410 (2008).

    CAS  Article  Google Scholar 

  40. 40.

    Noerwidi, S., Siswanto, S. & Widianto, H. Giant primate of Java: a new Gigantopithecus specimen from Semedo. Berkala Arkeologi 36, 141–160 (2016).

    Article  Google Scholar 

  41. 41.

    Bettis, E. A. III et al. Way out of Africa: early Pleistocene paleoenvironments inhabited by Homo erectus in Sangiran, Java. J. Hum. Evol. 56, 11–24 (2009).

    Article  Google Scholar 

  42. 42.

    Sémah, A. M., Sémah, F., Djubiantono, T. & Brasseur, B. Landscapes and hominids’ environments: changes between the lower and the early middle Pleistocene in Java (Indonesia). Quat. Int. 223–224, 451–454 (2010).

    Article  Google Scholar 

  43. 43.

    Janssen, R. et al. Tooth enamel stable isotopes of Holocene and Pleistocene fossil fauna reveal glacial and interglacial paleoenvironments of hominins in Indonesia. Quat. Sci. Rev. 144, 145–154 (2016).

    Article  Google Scholar 

  44. 44.

    Kelley, J. & Gao, F. Juvenile hominoid cranium from the late Miocene of southern China and hominoid diversity in Asia. Proc. Natl Acad. Sci. USA 109, 6882–6885 (2012).

    CAS  Article  Google Scholar 

  45. 45.

    Ji, X.-P. et al. Juvenile hominoid cranium from the terminal Miocene of Yunnan, China. Chin. Sci. Bull. 58, 3771–3779 (2013).

    CAS  Article  Google Scholar 

  46. 46.

    Nater, A. et al. Morphometric, behavioral, and genomic evidence for a new orangutan species. Curr. Biol. 27, 3576–3577 (2017).

    CAS  Article  Google Scholar 

  47. 47.

    Kardjilov, N. et al. New features in cold neutron radiography and tomography. Part II: applied energy-selective neutron radiography and tomography. Nucl. Instrum. Methods Phys. Res. A 501, 536–546 (2003).

    CAS  Article  Google Scholar 

  48. 48.

    Tremsin, A. S. et al. High resolution neutron imaging capabilities at BOA beamline at Paul Scherrer Institut. Nucl. Instrum. Methods Phys. Res. A 784, 486–493 (2015).

    CAS  Article  Google Scholar 

  49. 49.

    Winkler, B. Applications of neutron radiography and neutron tomography. Rev. Mineral. Geochem. 63, 459–471 (2006).

    CAS  Article  Google Scholar 

  50. 50.

    Schwarz, D., Vontobel, P., Lehmann, E. H., Meyer, C. A. & Bongartz, G. Neutron tomography of internal structures of vertebrate remains: a comparison with X-ray computed tomography. Palaeontol. Electronica http://palaeo-electronica.org/2005_2/neutron/issue2_05.htm (2005).

  51. 51.

    Sutton, M. D. Tomographic techniques for the study of exceptionally preserved fossils. Proc. Biol. Sci. 275, 1587–1593 (2008).

    Article  Google Scholar 

  52. 52.

    Spoor, C. F., Zonneveld, F. W. & Macho, G. A. Linear measurements of cortical bone and dental enamel by computed tomography: applications and problems. Am. J. Phys. Anthropol. 91, 469–484 (1993).

    CAS  Article  Google Scholar 

  53. 53.

    Fajardo, R. J., Ryan, T. M. & Kappelman, J. Assessing the accuracy of high-resolution X-ray computed tomography of primate trabecular bone by comparisons with histological sections. Am. J. Phys. Anthropol. 118, 1–10 (2002).

    Article  Google Scholar 

  54. 54.

    Coleman, M. N. & Colbert, M. W. CT thresholding protocols for taking measurements on three-dimensional models. Am. J. Phys. Anthropol. 133, 723–725 (2007).

    Article  Google Scholar 

  55. 55.

    Beaudet, A. et al. Neutron microtomography-based virtual extraction and analysis of a cercopithecoid partial cranium (STS 1039) embedded in a breccia fragment from sterkfontein member 4 (South Africa). Am. J. Phys. Anthropol. 159, 737–745 (2016).

    Article  Google Scholar 

  56. 56.

    Zanolli, C. et al. Exploring hominin and non-hominin primate dental fossil remains with neutron microtomography. Physcs Proc. 88, 109–115 (2017).

    CAS  Article  Google Scholar 

  57. 57.

    Mills, J. R. E. Ideal dental occlusion in the primates. Dent. Pract. 6, 47–61 (1955).

    Google Scholar 

  58. 58.

    Hiiemae, K. M. & Kay, R. F. In Proc. 4th International Congress of Primatology Vol. 3 (eds Montagna, W. & Zingeser, M. R.) 28–64 (Karger, 1973).

  59. 59.

    Kay, R. F. & Hiiemae, K. M. Jaw movement and tooth use in recent and fossil primates. Am. J. Phys. Anthropol. 40, 227–256 (1974).

    CAS  Article  Google Scholar 

  60. 60.

    Maier, W. & Schneck, G. Konstruktionsmorphologische Untersuchungen am Gebiß der hominoiden Primaten. Z. Morphol. Anthropol. 72, 127–169 (1981).

    CAS  PubMed  Google Scholar 

  61. 61.

    Ulhaas, L., Kullmer, O. & Schrenk, F. in Dental Perspectives on Human Evolution: State of the Art Research in Dental Paleoanthropology (eds Bailey, S. E. & Hublin, J. J.) 369–390 (Springer, 2007).

  62. 62.

    Kullmer, O., Schulz, D. & Benazzi, S. An experimental approach to evaluate the correspondence between wear facet position and occlusal movements. Anat. Rec. (Hoboken) 295, 846–852 (2012).

    Article  Google Scholar 

  63. 63.

    von Koenigswald, W., Anders, U., Engels, S., Schultz, J. A. & Kullmer, O. Jaw movement in fossil mammals: analysis, description and visualization. Palaontol. Z. 87, 141–159 (2013).

    Article  Google Scholar 

  64. 64.

    Fiorenza, L. et al. Molar macrowear reveals Neanderthal ecogeographic dietary variation. PLoS ONE 6, e14769 (2011).

    CAS  Article  Google Scholar 

  65. 65.

    Janis, C. M. in Evolutionary Paleobiology of Behavior and Coevolution (ed. Boucot, A. J.) 241–259 (Elsevier, 1990).

  66. 66.

    Hamilton, N. ggtern: An extension to ‘ggplot2’, for the creation of ternary diagrams. R version 2.2.2 https://CRAN.R-project.org/package=ggtern (2017).

  67. 67.

    R Core Team. R: a Language and Environment for Statistical computing (R Foundation for Statistical Computing, 2017).

  68. 68.

    Hervé, M. RVAideMemoire: Diverse basic statistical and graphical functions. R version 0.9-66 https://CRAN.R-project.org/package=RVAideMemoire (2017).

  69. 69.

    Olejniczak, A. J. et al. Dental tissue proportions and enamel thickness in Neandertal and modern human molars. J. Hum. Evol. 55, 12–23 (2008).

    Article  Google Scholar 

  70. 70.

    Kupczik, K. & Dean, M. C. Comparative observations on the tooth root morphology of Gigantopithecus blacki. J. Hum. Evol. 54, 196–204 (2008).

    Article  Google Scholar 

  71. 71.

    Maureille, B., Rougier, H., Houët, F. & Vandermeersch, B. Les dents inférieures du néandertalien Regourdou 1 (site de Regourdou, commune de Montignac, Dordogne): analyses métriques et comparatives. Paléo 13, 183–200 (2001).

    Google Scholar 

  72. 72.

    Scolan, H., Santos, F., Tillier, A. M., Maureille, B. & Quintard, A. Des nouveaux vestiges néanderthaliens à Las Pélénos (Monsempron-Libos, Lot-et-Garonne, France). Bull. Mem. Soc. Anthropol. Paris 24, 69–95 (2012).

    Article  Google Scholar 

  73. 73.

    Macchiarelli, R., Bondioli, L. & Mazurier, A. in Technique and Application in Dental Anthropology (eds Irish, J. D. & Nelson, G. C.) 426–448 (Cambridge Univ. Press, 2008).

  74. 74.

    Macchiarelli, R., Bayle, P., Bondioli, L., Mazurier, A. & Zanolli, C. in Anthropological Perspectives on Tooth Morphology. Genetics, Evolution, Variation (eds Scott, G. R. & Irish, J. D.) 250–277 (Cambridge Univ. Press, 2013).

  75. 75.

    Bayle, P. et al. in Pleistocene Databases. Acquisition, Storing, Sharing (eds Macchiarelli, R. & Weniger, G. C.) 29–46 (Neanderthal Museums, 2011).

  76. 76.

    Zanolli, C., Bayle, P. & Macchiarelli, R. Tissue proportions and enamel thickness distribution in the early Middle Pleistocene human deciduous molars from Tighenif (Ternifine), Algeria. C. R. Palevol. 9, 341–348 (2010).

    Article  Google Scholar 

  77. 77.

    Zanolli, C. Molar crown inner structural organization in Javanese Homo erectus. Am. J. Phys. Anthropol. 156, 148–157 (2015).

    Article  Google Scholar 

  78. 78.

    Mitteroecker, P. & Bookstein, F. L. Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evol. Biol. 38, 100–114 (2011).

    Article  Google Scholar 

  79. 79.

    Dray, S. & Dufour, A. B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).

    Article  Google Scholar 

  80. 80.

    Bookstein, F. L. Morphometric Tools for Landmark Data: Geometry and Biology (Cambridge Univ. Press, 1991).

  81. 81.

    Gokcen, I. & Peng, J. Comparing linear discriminant analysis and support vector machines. In Proc. Advances in Information Systems: Second International Conference, ADVIS 2002 (ed. Yakhno, T.) 104–113 (Springer, 2002).

Download references

Acknowledgements

We thank the Pusat Penelitian Arkeologi of Jakarta and the Balai Pelestarian Situs Manusia Purba of Sangiran, Java, and the Muséum national d’histoire naturelle. We thank the many curators and colleagues who granted access to fossil and recent hominid materials for scanning. We are grateful to D. Grimaud-Hervé, C. Hertler, F. Sémah and H. Widianto for their support. We thank J. Braga for sharing the microtomographic scans of South African fossil specimens. For scientific discussion, we thank P. Bayle, S. Benazzi, L. Bondioli, J. Braga, M.C. Dean, F. Détroit, Y. Hou, L. Mancini, B. Maureille, A. Mazurier, L. Puymerail, L. Rook, C. Tuniz and B. Wood. We would like to express our gratitude to C. Hemm, L. Hauser, M. Janocha and L. Strzelczyk for their help with the surface scanning and OFA analysis. Scanning of the Vietnamese specimens was funded by the Projet International de Coopération Scientifique-Centre national de la recherche scientifique (CNRS) grant to A.M.B (PICS 2011-2013 n°5712). Research was supported by the CNRS.

Author information

Affiliations

Authors

Contributions

The study was initiated by C.Z. during his PhD research project under the supervision of R.M. Microtomography-based data were collected and elaborated by C.Z., A.M.B., F.D., J.K., O.K., L.F., F.S., A.T.N., T.M.H.N., B.S., J.-J.H., M.M.S., X.J. and R.M. Quantitative data were compiled and analysed by C.Z., J.D., O.K., L.F., L.P., M.M.S., F.E.G. and R.M. C.Z, R.M, O.K. and J.K. wrote the manuscript with contributions from all the other authors.

Corresponding author

Correspondence to Clément Zanolli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Material 1–3, Supplementary Figures 1–20, Supplementary Tables 1–12 and Supplementary References

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zanolli, C., Kullmer, O., Kelley, J. et al. Evidence for increased hominid diversity in the Early to Middle Pleistocene of Indonesia. Nat Ecol Evol 3, 755–764 (2019). https://doi.org/10.1038/s41559-019-0860-z

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing