Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global ecological impacts of marine exotic species

Matters Arising to this article was published on 17 February 2020

A Publisher Correction to this article was published on 02 August 2019

This article has been updated

Abstract

Exotic species are a growing global ecological threat; however, their overall effects are insufficiently understood. While some exotic species are implicated in many species extinctions, others can provide benefits to the recipient communities. Here, we performed a meta-analysis to quantify and synthesize the ecological effects of 76 exotic marine species (about 6% of the listed exotics) on ten variables in marine communities. These species caused an overall significant, but modest in magnitude (as indicated by a mean effect size of g < 0.2), decrease in ecological variables. Marine primary producers and predators were the most disruptive trophic groups of the exotic species. Approximately 10% (that is, 2 out of 19) of the exotic species assessed in at least three independent studies had significant impacts on native species. Separating the innocuous from the disruptive exotic species provides a basis for triage efforts to control the marine exotic species that have the most impact, thereby helping to meet Aichi Biodiversity Target 9 of the Convention on Biological Diversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of marine exotic species depends on the trophic levels of the native species or community and the exotic species.
Fig. 2: Network diagram of the ecological effects of marine exotics on native species classified by trophic level and taxonomic group.
Fig. 3: Mean effect size (Hedges’ g± 95% CI) of marine exotic species on response variables classified by the levels of ecological complexity.
Fig. 4: Mean effect size (Hedges’ g ± 95% CI) of marine exotic species based on different variables.
Fig. 5: Ranking of the 19 sufficiently assessed marine exotic species based on the species mean effect size.

Similar content being viewed by others

Data availability

All data underlying the study have been deposited in PANGAEA at https://doi.pangaea.de/10.1594/PANGAEA.895681.

Code availability

The R script used in this manuscript will be deposited in the Github community repository upon publication (https://github.com/ngeraldi/marine-exotics-global-analysis).

Change history

  • 02 August 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).

    Article  PubMed  Google Scholar 

  2. Hulme, P. E., Pyšek, P., Nentwig, W. & Vilà, M. Will threat of biological invasions unite the European Union? Science 324, 40–41 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Catford, J. A., Bode, M. & Tilman, D. Introduced species that overcome life history tradeoffs can cause native extinctions. Nat. Commun. 9, 2131 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Medina, F. M. et al. A global review of the impacts of invasive cats on island endangered vertebrates. Glob. Change Biol. 17, 3503–3510 (2011).

    Article  Google Scholar 

  6. Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. Proc. Natl Acad. Sci. USA 113, 11261–11265 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Witte, F. et al. The destruction of an endemic species flock—quantitative data on the decline of the haplochromine cichlids of Lake Victoria. Environ. Biol. Fishes 34, 1–28 (1992).

    Article  Google Scholar 

  8. Ramus, A. P., Silliman, B. R., Thomsen, M. S. & Long, Z. T. An invasive foundation species enhances multifunctionality in a coastal ecosystem. Proc. Natl Acad. Sci. USA 114, 8580–8585 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Geraldi, N. R., Smyth, A. R., Piehler, M. F. & Peterson, C. H. Artificial substrates enhance non-native macroalga and N-2 production. Biol. Invasions 16, 1819–1831 (2014).

    Article  Google Scholar 

  10. Russell, J. C. & Blackburn, T. M. The rise of invasive species denialism. Trends Ecol. Evol. 32, 3–6 (2017).

    Article  PubMed  Google Scholar 

  11. Davis, M. et al. Don’t judge species on their origins. Nature 474, 153–154 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Clergeau, P. & Nuñez, M. A. The language of fighting invasive species. Science 311, 951–951 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Richardson, D. M. & Ricciardi, A. Misleading criticisms of invasion science: a field guide. Divers. Distrib. 19, 1461–1467 (2013).

    Article  Google Scholar 

  14. Valéry, L., Fritz, H. & Lefeuvre, J.-C. Another call for the end of invasion biology. Oikos 122, 1143–1146 (2013).

    Article  Google Scholar 

  15. Ricciardi, A. & Ryan, R. The exponential growth of invasive species denialism. Biol. Invasions 20, 549–553 (2018).

    Article  Google Scholar 

  16. Gurevitch, J. & Padilla, D. K. Are invasive species a major cause of extinctions? Trends Ecol. Evol. 19, 470–474 (2004).

    Article  PubMed  Google Scholar 

  17. Clavero, M. & Garcia-Berthou, E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20, 110–110 (2005).

    Article  PubMed  Google Scholar 

  18. Pyšek, P., Blackburn, T. M., García-Berthou, E., Perglová, I. & Rabitsch, W. in Impact of Biological Invasions on Ecosystem Services (eds Vilà, M. & Hulme, P. E.) 157–175 (Springer, 2017).

  19. Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Lett. 12, 20150623 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Green, S. J., Akins, J. L., Maljković, A. & Côté, I. M. Invasive lionfish drive Atlantic coral reef fish declines. PLoS ONE 7, e32596 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vilà, M. et al. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708 (2011).

    Article  PubMed  Google Scholar 

  22. Maggi, E. et al. Ecological impacts of invading seaweeds: a meta-analysis of their effects at different trophic levels. Divers. Distrib. 21, 1–12 (2015).

    Article  Google Scholar 

  23. Gallardo, B., Clavero, M., Sánchez, M. I. & Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Change Biol. 22, 151–163 (2016).

    Article  Google Scholar 

  24. Guy-Haim, T. et al. Diverse effects of invasive ecosystem engineers on marine biodiversity and ecosystem functions—a global review and meta-analysis. Glob. Change Biol. 24, 906–924 (2018).

    Article  Google Scholar 

  25. Mollot, G., Pantel, J. H. & Romanuk, T. N. in Advances in Ecological Research Vol. 56 (eds Bohan, D. A., Dumbrell, A. J. & Massol, F.) Ch. 2 (Academic, 2017).

  26. Thomsen, M. S. et al. Impacts of marine invaders on biodiversity depend on trophic position and functional similarity. Mar. Ecol. Prog. Ser. 495, 39–47 (2014).

    Article  Google Scholar 

  27. Cameron, E. K., Vilà, M. & Cabeza, M. Global meta-analysis of the impacts of terrestrial invertebrate invaders on species, communities and ecosystems. Glob. Ecol. Biogeogr. 25, 596–606 (2016).

    Article  Google Scholar 

  28. Thompson, R. M., Hemberg, M., Starzomski, B. M. & Shurin, J. B. Trophic levels and trophic tangles: the prevalence of omnivory in real food webs. Ecology 88, 612–617 (2007).

    Article  PubMed  Google Scholar 

  29. Vergés, A. et al. Tropical rabbitfish and the deforestation of a warming temperate sea. J. Ecol. 102, 1518–1527 (2014).

    Article  Google Scholar 

  30. Sala, E., Kizilkaya, Z., Yildirim, D. & Ballesteros, E. Alien marine fishes deplete algal biomass in the Eastern Mediterranean. PLoS ONE 6, e17356 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. The Strategic Plan for Biodiversity 2011-2020 and the Aichi Biodiversity Targets UNEP/CBD/COP/DEC/X/2 2010 (UNEP, CBP, 2010).

  32. Jeschke, J. M. et al. Defining the impact of non-native species. Conserv. Biol. 28, 1188–1194 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lockwood, J. L., Hoopes, M. F. & Marchetti, M. P. Invasion Ecology (Wiley-Blackwell, 2013).

  34. Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).

    Article  PubMed  Google Scholar 

  35. Young, A. M. & Larson, B. M. H. Clarifying debates in invasion biology: a survey of invasion biologists. Environ. Res. 111, 893–898 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93–107 (2000).

    Article  Google Scholar 

  37. Jackson, M. C., Loewen, C. J. G., Vinebrooke, R. D. & Chimimba, C. T. Net effects of multiple stressors in freshwater ecosystems: a meta-analysis. Glob. Change Biol. 22, 180–189 (2016).

    Article  Google Scholar 

  38. Nunes, J. A. C. C. et al. Global trends on reef fishes’ ecology of fear: flight initiation distance for conservation. Mar. Environ. Res. 136, 153–157 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Bellard, C., Genovesi, P. & Jeschke, J. M. Global patterns in threats to vertebrates by biological invasions. Proc. R. Soc. B 283, 20152454 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Blackburn, T. M., Cassey, P., Duncan, R. P., Evans, K. L. & Gaston, K. J. Avian extinction and mammalian introductions on oceanic islands. Science 305, 1955–1958 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Graham, N. A. J. et al. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559, 250–253 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Delibes, M., Clavero, M., Prenda, J., Blazquez, M. D. & Ferreras, P. Potential impact of an exotic mammal on rocky intertidal communities of northwestern Spain. Biol. Invasions 6, 213–219 (2004).

    Article  Google Scholar 

  43. Kurle, C. M., Croll, D. A. & Tershy, B. R. Introduced rats indirectly change marine rocky intertidal communities from algae- to invertebrate-dominated. Proc. Natl Acad. Sci. USA 105, 3800–3804 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994).

    Article  Google Scholar 

  45. Anton, A. et al. Decoupled effects (positive to negative) of nutrient enrichment on ecosystem services. Ecol. Appl. 21, 991–1009 (2011).

    Article  PubMed  Google Scholar 

  46. Garcia, D., Martinez, D., Stouffer, D. B. & Tylianakis, J. M. Exotic birds increase generalization and compensate for native bird decline in plant–frugivore assemblages. J. Anim. Ecol. 83, 1441–1450 (2014).

    Article  PubMed  Google Scholar 

  47. Strauss, S. Y., Lau, J. A. & Carroll, S. P. Evolutionary responses of natives to introduced species: what do introductions tell us about natural communities? Ecol. Lett. 9, 354–371 (2006).

    Article  Google Scholar 

  48. Strayer, D. L. Eight questions about invasions and ecosystem functioning. Ecol. Lett. 15, 1199–1210 (2012).

    Article  PubMed  Google Scholar 

  49. Freestone, A. L., Ruiz, G. M. & Torchin, M. E. Stronger biotic resistance in tropics relative to temperate zone: effects of predation on marine invasion dynamics. Ecology 94, 1370–1377 (2013).

    Article  PubMed  Google Scholar 

  50. Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).

    Article  PubMed  Google Scholar 

  51. Saintilan, N. Biogeography of Australian saltmarsh plants. Austral. Ecol. 34, 929–937 (2009).

    Article  Google Scholar 

  52. Kerswell, A. P. Global biodiversity patterns of benthic marine algae. Ecology 87, 2479–2488 (2006).

    Article  PubMed  Google Scholar 

  53. Vilà, M. et al. How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front. Ecol. Environ. 8, 135–144 (2010).

    Article  Google Scholar 

  54. Ricciardi, A. & Kipp, R. Predicting the number of ecologically harmful exotic species in an aquatic system. Divers. Distrib. 14, 374–380 (2008).

    Article  Google Scholar 

  55. Kumschick, S. et al. Comparing impacts of alien plants and animals in Europe using a standard scoring system. J. Appl. Ecol. 52, 552–561 (2015).

    Article  Google Scholar 

  56. Lowe, S., Browne, M. & Boudjelas, S. 100 of the World’s Worst Invasive Alien Species (IUCN/SSC Invasive Species Specialist Group (ISSG), 2000).

  57. Pauchard, A. et al. Biodiversity assessments: origin matters. PLoS Biol. 16, e2006686 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. South, J., Dick, J. T. A., McCard, M., Barrios-O’Neill, D. & Anton, A. Predicting predatory impact of juvenile invasive lionfish (Pterois volitans) on a crustacean prey using functional response analysis: effects of temperature, habitat complexity and light regimes. Environ. Biol. Fishes 100, 1155–1165 (2017).

    Article  Google Scholar 

  59. Green, D. S. & Crowe, T. P. Context- and density-dependent effects of introduced oysters on biodiversity. Biol. Invasions 16, 1145–1163 (2014).

    Article  Google Scholar 

  60. Thomsen, M. et al. Forty years of experiments on aquatic invasive species: are study biases limiting our understanding of impacts? NeoBiota 22, 1–22 (2014).

    Article  Google Scholar 

  61. Ricciardi, A. Are modern biological invasions an unprecedented form of global change? Conserv. Biol. 21, 329–336 (2007).

    Article  PubMed  Google Scholar 

  62. Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl Acad. Sci. USA 115, E2264–E2273 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Davis, M. A. & Chew, M. K. ‘The denialists are coming!’ Well, not exactly: a response to Russell and Blackburn. Trends Ecol. Evol. 32, 229–230 (2017).

    Article  PubMed  Google Scholar 

  64. Koricheva, J., Gurevitch, J., Mengersen, K. (eds) Handbook of Meta-analysis in Ecology and Evolution (Princeton Univ. Press, 2013).

  65. Nosek, B. A. et al. Promoting an open research culture. Science 348, 1422–1425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).

  67. Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. Introduction to Meta-Analysis (Wiley-Blackwell, 2009).

  68. Hannam, M. P. & Wyllie-Echeverria, S. Microtopography promotes coexistence of an invasive seagrass and its native congener. Biol. Invasions 17, 381–395 (2015).

    Article  Google Scholar 

  69. Viechbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Google Scholar 

  70. Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Habeck, C. W. & Schultz, A. K. Community-level impacts of white-tailed deer on understory plants in North American forests: a meta-analysis. Aob Plants 7, plv119 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Viechtbauer, W. & Cheung, M. W.-L. Outlier and influence diagnostics for meta-analysis. Res. Synth. Methods 1, 112–125 (2010).

    Article  PubMed  Google Scholar 

  73. Zarnetske, P. L., Seabloom, E. W. & Hacker, S. D. Non-target effects of invasive species management: beachgrass, birds, and bulldozers in coastal dunes. Ecosphere 1, art13 (2010).

    Article  Google Scholar 

  74. Moseman, S. M., Zhang, R., Qian, P. Y. & Levin, L. A. Diversity and functional responses of nitrogen-fixing microbes to three wetland invasions. Biol. Invasions 11, 225–239 (2009).

    Article  Google Scholar 

  75. Castorani, M. C. N. & Hovel, K. A. Invasive prey indirectly increase predation on their native competitors. Ecology 96, 1911–1922 (2015).

    Article  PubMed  Google Scholar 

  76. Crooks, J. A. Assessing invader roles within changing ecosystems: historical and experimental perspectives on an exotic mussel in an urbanized lagoon. Biol. Invasions 3, 23–36 (2001).

    Article  Google Scholar 

  77. Munari, C. Effects of the exotic invader Musculista senhousia on benthic communities of two Mediterranean lagoons. Hydrobiologia 611, 29–43 (2008).

    Article  Google Scholar 

  78. Magalhaes, W. F. & Bailey-Brock, J. H. Polychaete assemblages associated with the invasive green alga Avrainvillea amadelpha and surrounding bare sediment patches in Hawaii. Memoirs Mus. Vic. 71, 161–168 (2014).

    Article  Google Scholar 

  79. Caño, L., Campos, J. A., García-Magro, D. & Herrera, M. Invasiveness and impact of the non-native shrub Baccharis halimifolia in sea rush marshes: fine-scale stress heterogeneity matters. Biol. Invasions 16, 2063–2077 (2014).

    Article  Google Scholar 

  80. Mendez, M. M., Schwindt, E. & Bortolus, A. Differential benthic community response to increased habitat complexity mediated by an invasive barnacle. Aquat. Ecol. 49, 441–452 (2015).

    Article  CAS  Google Scholar 

  81. Wonham, M. J., O’Connor, M. & Harley, C. D. G. Positive effects of a dominant invader on introduced and native mudflat species. Mar. Ecol. Prog. Ser. 289, 109–116 (2005).

    Article  Google Scholar 

  82. Elías, R. et al. Effect of the invader Boccardia proboscidea (Polychaeta: Spionidae) on richness, diversity and structure of SW Atlantic epilithic intertidal community. Mar. Pollut. Bull. 91, 530–536 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Cordell, J. R., Levy, C. & Toft, J. D. Ecological implications of invasive tunicates associated with artificial structures in Puget Sound, Washington, USA. Biol. Invasions 15, 1303–1318 (2013).

    Article  Google Scholar 

  84. Bonnici, L., Evans, J., Borg, J. A. & Schembri, P. J. J. Biological aspects and ecological effects of a bed of the invasive non-indigenous mussel Brachidontes pharaonis (Fischer P., 1870) in Malta. Mediterr. Mar. Sci. 13, 153–161 (2012).

    Article  Google Scholar 

  85. Malyshev, A. & Quijón, P. A. Disruption of essential habitat by a coastal invader: new evidence of the effects of green crabs on eelgrass beds. ICES J. Mar. Sci. 68, 1852–1856 (2011).

    Article  Google Scholar 

  86. Gregory, G. J. & Quijón, P. A. The impact of a coastal invasive predator on infaunal communities: assessing the roles of density and a native counterpart. J. Sea Res. 66, 181–186 (2011).

    Article  Google Scholar 

  87. Whitlow, W. L. Changes in survivorship, behavior, and morphology in native soft-shell clams induced by invasive green crab predators. Mar. Ecol. 31, 418–430 (2010).

    Google Scholar 

  88. Whitlow, W. L., Rice, N. A. & Sweeney, C. Native species vulnerability to introduced predators: testing an inducible defense and a refuge from predation. Biol. Invasions 5, 23–31 (2003).

    Article  Google Scholar 

  89. Large, S. I. & Smee, D. L. Biogeographic variation in behavioral and morphological responses to predation risk. Oecologia 171, 961–969 (2013).

    Article  PubMed  Google Scholar 

  90. Griffen, B. D. & Byers, J. E. Community impacts of two invasive crabs: the interactive roles of density, prey recruitment, and indirect effects. Biol. Invasions 11, 927–940 (2009).

    Article  Google Scholar 

  91. Estelle, V. & Grosholz, E. D. Experimental test of the effects of a non-native invasive species on a wintering shorebird. Conserv. Biol. 26, 472–481 (2012).

    Article  PubMed  Google Scholar 

  92. Wootton, L. First report of Carex macrocephala in Eastern North America with notes on its co-occurrence with Carex kobomugi in New Jersey. J. Torrey Bot. Soc. 134, 126–134 (2007).

    Article  Google Scholar 

  93. Wootton, L. S. et al. When invasive species have benefits as well as costs: managing Carex kobomugi (Asiatic sand sedge) in New Jersey’s coastal dunes. Biol. Invasions 7, 1017–1027 (2005).

    Article  Google Scholar 

  94. Novoa, A. & González, L. Impacts of Carpobrotus edulis (L.) N.E.Br. on the germination, establishment and survival of native plants: a clue for assessing its competitive strength. PLoS ONE 9, e107557 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Magnoli, S. M., Kleinhesselink, A. R. & Cushman, J. H. Responses to invasion and invader removal differ between native and exotic plant groups in a coastal dune. Oecologia 173, 1521–1530 (2013).

    Article  PubMed  Google Scholar 

  96. Novoa, A., González, L., Moravcová, L. & Pyšek, P. Constraints to native plant species establishment in coastal dune communities invaded by Carpobrotus edulis: implications for restoration. Biol. Conserv. 164, 1–9 (2013).

    Article  Google Scholar 

  97. Hata, K., Kato, H. & Kachi, N. Seedlings of a native shrub can establish under forests dominated by an alien tree, Casuarina equisetifolia, on subtropical oceanic islands. J. For. Res. 17, 208–212 (2012).

    Article  Google Scholar 

  98. Smith, J. R., Vogt, S. C., Creedon, F., Lucas, B. J. & Eernisse, D. J. The non-native turf-forming alga Caulacanthus ustulatus displaces space-occupants but increases diversity. Biol. Invasions 16, 2195–2208 (2014).

    Article  Google Scholar 

  99. Bulleri, F. & Piazzi, L. Variations in importance and intensity of competition underpin context dependency in the effects of an invasive seaweed on resident assemblages. Mar. Biol. 162, 485–489 (2015).

    Article  Google Scholar 

  100. Tomas, F., Box, A. & Terrados, J. Effects of invasive seaweeds on feeding preference and performance of a keystone Mediterranean herbivore. Biol. Invasions 13, 1559–1570 (2011).

    Article  Google Scholar 

  101. Tamburello, L. et al. Variation in the impact of non-native seaweeds along gradients of habitat degradation: a meta-analysis and an experimental test. Oikos 124, 1121–1131 (2015).

    Article  Google Scholar 

  102. Klein, J. C. & Verlaque, M. Macrophyte assemblage associated with an invasive species exhibiting temporal variability in its development pattern. Hydrobiologia 636, 369–378 (2009).

    Article  Google Scholar 

  103. Kersting, D. K., Ballesteros, E., De Caralt, S. & Linares, C. Invasive macrophytes in a marine reserve (Columbretes Islands, NW Mediterranean): spread dynamics and interactions with the endemic scleractinian coral Cladocora caespitosa. Biol. Invasions 16, 1599–1610 (2014).

    Google Scholar 

  104. Tejada, S., Deudero, S., Box, A. & Sureda, A. Physiological response of the sea urchin Paracentrotus lividus fed with the seagrass Posidonia oceanica and the alien algae Caulerpa racemosa and Lophocladia lallemandii. Mar. Environ. Res. 83, 48–53 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Klein, J. C. & Velarque, M. Temporal trends in invasion impacts in macrophyte assemblages of the Mediterranean Sea. Cah. Biol. Mar. 53, 403–407 (2012).

    Google Scholar 

  106. Vázquez-Luis, M., Sanchez-Jerez, P. & Bayle-Sempere, J. T. Effects of Caulerpa racemosa var. cylindracea on prey availability: an experimental approach to predation of amphipods by Thalassoma pavo (Labridae). Hydrobiologia 654, 147–154 (2010).

    Article  Google Scholar 

  107. Vázquez-Luis, M., Sanchez-Jerez, P. & Bayle-Sempere, J. T. Changes in amphipod (Crustacea) assemblages associated with shallow-water algal habitats invaded by Caulerpa racemosa var. cylindracea in the western Mediterranean Sea. Mar. Environ. Res. 65, 416–426 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Cebrian, E., Linares, C., Marschal, C. & Garrabou, J. Exploring the effects of invasive algae on the persistence of gorgonian populations. Biol. Invasions 14, 2647–2656 (2012).

    Article  Google Scholar 

  109. Gribben, P. E., Byers, J. E., Wright, J. T. & Glasby, T. M. Positive versus negative effects of an invasive ecosystem engineer on different components of a marine ecosystem. Oikos 122, 816–824 (2013).

    Article  Google Scholar 

  110. Gallucci, F., Hutchings, P., Gribben, P. & Fonseca, G. Habitat alteration and community-level effects of an invasive ecosystem engineer: a case study along the coast of NSW, Australia. Mar. Ecol. Prog. Ser. 449, 95–108 (2012).

    Article  Google Scholar 

  111. Gribben, P. E. et al. Reduced performance of native infauna following recruitment to a habitat-forming invasive marine alga. Oecologia 158, 733–745 (2009).

    Article  PubMed  Google Scholar 

  112. Wright, J. T. & Gribben, P. E. Predicting the impact of an invasive seaweed on the fitness of native fauna. J. Appl. Ecol. 45, 1540–1549 (2008).

    Article  Google Scholar 

  113. Byers, J. E., Wright, J. T. & Gribben, P. E. Variable direct and indirect effects of a habitat-modifying invasive species on mortality of native fauna. Ecology 91, 1787–1798 (2010).

    Article  PubMed  Google Scholar 

  114. Taylor, S. L., Bishop, M. J., Kelaher, B. P. & Glasby, T. M. Impacts of detritus from the invasive alga Caulerpa taxifolia on a soft sediment community. Mar. Ecol. Prog. Ser. 420, 73–81 (2010).

    Article  Google Scholar 

  115. Gribben, P. E., Wright, J. T., O’Connor, W. A. & Steinberg, P. Larval settlement preference of a native bivalve: the influence of an invasive alga versus native substrata. Aquat. Biol. 7, 217–227 (2009).

    Article  Google Scholar 

  116. Strain, E. M. A. & Johnson, C. R. The effects of an invasive habitat modifier on the biotic interactions between two native herbivorous species and benthic habitat in a subtidal rocky reef ecosystem. Biol. Invasions 15, 1391–1405 (2013).

    Article  Google Scholar 

  117. Strain, E. M. A. & Johnson, C. R. Competition between an invasive urchin and commercially fished abalone. Mar. Ecol. Prog. Ser. 377, 169–182 (2009).

    Article  Google Scholar 

  118. Mason, T. J. & French, K. Management regimes for a plant invader differentially impact resident communities. Biol. Conserv. 136, 246–259 (2007).

    Article  Google Scholar 

  119. Bugnot, A. B., Coleman, R. A., Figueira, W. F. & Marzinelli, E. M. Community-level impacts of the invasive isopod Cirolana harfordi. Biol. Invasions 17, 1149–1161 (2015).

    Article  Google Scholar 

  120. Drouin, A., McKindsey, C. W. & Johnson, L. E. Higher abundance and diversity in faunal assemblages with the invasion of Codium fragile ssp. fragile in eelgrass meadows. Mar. Ecol. Prog. Ser. 424, 105–117 (2011).

    Article  Google Scholar 

  121. Schmidt, A. L. & Scheibling, R. E. Effects of native and invasive macroalgal canopies on composition and abundance of mobile benthic macrofauna and turf-forming algae. J. Exp. Mar. Biol. Ecol. 341, 110–130 (2007).

    Article  Google Scholar 

  122. Chavanich, S. & Harris, L. G. Impact of the non-native macroalga Codium fragile (Sur.) Hariot ssp tomentosoides (van Goor) Silva on the native snail Lacuna vincta (Montagu, 1803) in the Gulf of Maine. Veliger 47, 85–90 (2004).

    Google Scholar 

  123. Drouin, A., McKindsey, C. W. & Johnson, L. E. Detecting the impacts of notorious invaders: experiments versus observations in the invasion of eelgrass meadows by the green seaweed Codium fragile. Oecologia 168, 491–502 (2012).

    Article  PubMed  Google Scholar 

  124. Novais, A., Souza, A. T., Ilarri, M., Pascoal, C. & Sousa, R. Facilitation in the low intertidal: effects of an invasive species on the structure of an estuarine macrozoobenthic assemblage. Mar. Ecol. Prog. Ser. 522, 157–167 (2015).

    Article  Google Scholar 

  125. Ilarri, M. I., Souza, A. T., Antunes, C., Guilhermino, L. & Sousa, R. Influence of the invasive Asian clam Corbicula fluminea (Bivalvia: Corbiculidae) on estuarine epibenthic assemblages. Estuar. Coast. Shelf Sci. 143, 12–19 (2014).

    Article  Google Scholar 

  126. Talman, S. & Keough, M. Impact of an exotic clam, Corbula gibba, on the commercial scallop Pecten fumatus in Port Phillip Bay, south-east Australia: evidence of resource-restricted growth in a subtidal environment. Mar. Ecol. Prog. Ser. 221, 135–143 (2001).

    Article  Google Scholar 

  127. Ragueneau, O. et al. Biodeposition by an invasive suspension feeder impacts the biogeochemical cycle of Si in a coastal ecosystem (Bay of Brest, France). Biogeochemistry 75, 19–41 (2005).

    Article  CAS  Google Scholar 

  128. Le Pape, O., Guerault, D. & Desaunay, Y. Effect of an invasive mollusc, American slipper limpet Crepidula fornicata, on habitat suitability for juvenile common sole Solea solea in the Bay of Biscay. Mar. Ecol. Prog. Ser. 277, 107–115 (2004).

    Article  Google Scholar 

  129. Martin, S. et al. Benthic community respiration in areas impacted by the invasive mollusk Crepidula fornicata. Mar. Ecol. Prog. Ser. 347, 51–60 (2007).

    Article  CAS  Google Scholar 

  130. Smith, B. E., Collie, J. S. & Lengyel, N. L. Fish trophic engineering: ecological effects of the invasive ascidian Didemnum vexillum (Georges Bank, northwestern Atlantic). J. Exp. Mar. Biol. Ecol. 461, 489–498 (2014).

    Article  Google Scholar 

  131. Long, H. A. & Grosholz, E. D. Overgrowth of eelgrass by the invasive colonial tunicate Didemnum vexillum: consequences for tunicate and eelgrass growth and epifauna abundance. J. Exp. Mar. Biol. Ecol. 473, 188–194 (2015).

    Article  Google Scholar 

  132. Dijkstra, J. A., Lambert, W. J. & Harris, L. G. Introduced species provide a novel temporal resource that facilitates native predator population growth. Biol. Invasions 15, 911–919 (2013).

    Article  Google Scholar 

  133. Petillon, J., Frederic, Y., Alain, C. & Lefeuvre, J.-C. Impact of an invasive plant (Elymus athericus) on the conservation value of tidal salt marshes in western France and implications for management: responses of spider populations. Biol. Conserv. 126, 103–117 (2005).

    Article  Google Scholar 

  134. Bruschetti, M., Bazterrica, C., Luppi, T. & Iribarne, O. An invasive intertidal reef-forming polychaete affect habitat use and feeding behavior of migratory and locals birds in a SW Atlantic coastal lagoon. J. Exp. Mar. Biol. Ecol. 375, 76–83 (2009).

    Article  Google Scholar 

  135. Bazterrica, M. C., Botto, F. & Iribarne, O. Effects of an invasive reef-building polychaete on the biomass and composition of estuarine macroalgal assemblages. Biol. Invasions 14, 765–777 (2012).

    Article  Google Scholar 

  136. Bruschetti, M., Luppi, T., Fanjul, E., Rosenthal, A. & Iribarne, O. Grazing effect of the invasive reef-forming polychaete Ficopomatus enigmaticus (Fauvel) on phytoplankton biomass in a SW Atlantic coastal lagoon. J. Exp. Mar. Biol. Ecol. 354, 212–219 (2008).

    Article  Google Scholar 

  137. Schwindt, E., Iribarne, O. O. & Isla, F. I. Physical effects of an invading reef-building polychaete on an Argentinean estuarine environment. Estuar. Coast. Shelf Sci. 59, 109–120 (2004).

    Article  Google Scholar 

  138. Bazterrica, M. C. et al. Factors controlling macroalgae assemblages in a Southwest Atlantic coastal lagoon modified by an invading reef forming polychaete. J. Exp. Mar. Biol. Ecol. 443, 169–177 (2013).

    Article  Google Scholar 

  139. Heiman, K. W. & Micheli, F. Non-native ecosystem engineer alters estuarine communities. Integr. Comp. Biol. 50, 226–236 (2010).

    Article  PubMed  Google Scholar 

  140. Bruschetti, M., Bazterrica, C., Fanjul, E., Luppi, T. & Iribarne, O. Effect of biodeposition of an invasive polychaete on organic matter content and productivity of the sediment in a coastal lagoon. J. Sea Res. 66, 20–28 (2011).

    Article  Google Scholar 

  141. Fukunaga, A., Peyton, K. A. & Thomas, F. I. M. Epifaunal community structure and ammonium uptake compared for the invasive algae, Gracilaria salicornia and Acanthophora specifera, and the native alga, Padina thivyi. J. Exp. Mar. Biol. Ecol. 456, 78–86 (2014).

    Article  CAS  Google Scholar 

  142. Thomsen, M., Stæhr, P. A., Nejrup, L. B. & Schiel, D. R. Effects of the invasive macroalgae Gracilaria vermiculophylla on two co-occurring foundation species and associated invertebrates. Aquat. Invasions 8, 133–145 (2013).

    Article  Google Scholar 

  143. Höffle, H., Thomsen, M. S. & Holmer, M. High mortality of Zostera marina under high temperature regimes but minor effects of the invasive macroalgae Gracilaria vermiculophylla. Estuar. Coast. Shelf Sci. 92, 35–46 (2011).

    Article  Google Scholar 

  144. Thomsen, M. S. Experimental evidence for positive effects of invasive seaweed on native invertebrates via habitat-formation in a seagrass bed. Aquat. Invasions 5, 341–346 (2010).

    Article  Google Scholar 

  145. Martínez-Lüscher, J. & Holmer, M. Potential effects of the invasive species Gracilaria vermiculophylla on Zostera marina metabolism and survival. Mar. Environ. Res. 69, 345–349 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Janiak, D. S. & Whitlatch, R. B. Epifaunal and algal assemblages associated with the native Chondrus crispus (Stackhouse) and the non-native Grateloupia turuturu (Yamada) in eastern Long Island Sound. J. Exp. Mar. Biol. Ecol. 413, 38–44 (2012).

    Article  Google Scholar 

  147. Brousseau, D. & Goldberg, R. Effect of predation by the invasive crab Hemigrapsus sanguineus on recruiting barnacles Semibalanus balanoides in western Long Island Sound, USA. Mar. Ecol. Prog. Ser. 339, 221–228 (2007).

    Article  Google Scholar 

  148. Brousseau, D. J., Goldberg, R. & Garza, C. Impact of predation by the invasive crab Hemigrapsus sanguineus on survival of juvenile blue mussels in Western Long Island Sound. Northeast. Nat. 21, 119–133 (2014).

    Article  Google Scholar 

  149. Bennett, A. E., Thomsen, M. & Strauss, S. Y. Multiple mechanisms enable invasive species to suppress native species. Am. J. Bot. 98, 1086–1094 (2011).

    Article  PubMed  Google Scholar 

  150. Harvey, K. J., Britton, D. R. & Minchinton, T. E. Detecting impacts of non-native species on associated invertebrate assemblages depends on microhabitat. Austral. Ecol. 39, 511–521 (2014).

    Article  Google Scholar 

  151. Kamalakannan, B., Jeevamani, J. J. J., Nagendran, N. A., Pandiaraja, D. & Chandrasekaran, S. Impact of removal of invasive species Kappaphycus alvarezii from coral reef ecosystem in Gulf of Mannar, India. Curr. Sci. 106, 1401–1408 (2014).

    Google Scholar 

  152. Sato, S., Chiba, T. & Hasegawa, H. Long-term fluctuations in mollusk populations before and after the appearance of the alien predator Euspira fortunei on the Tona coast, Miyagi Prefecture, northern Japan. Fish. Sci. 78, 589–595 (2012).

    Article  CAS  Google Scholar 

  153. Rowles, A. D. & O’dowd, D. J. Impacts of the invasive Argentine ant on native ants and other invertebrates in coastal scrub in south-eastern Australia. Austral. Ecol. 34, 239–248 (2009).

    Article  Google Scholar 

  154. Bedini, R., Bedini, M., Bonechi, L. & Piazzi, L. Effects of non-native turf-forming Rhodophyta on mobile macro-invertebrate assemblages in the north-western Mediterranean Sea. Mar. Biol. Res. 11, 430–437 (2015).

    Article  Google Scholar 

  155. Eash-Loucks, W. E., Kimball, M. E. & Petrinec, K. M. Long-term changes in an estuarine mud crab community: evaluating the impact of non-native species. J. Crustac. Biol. 34, 731–738 (2014).

    Article  Google Scholar 

  156. O’Shaughnessy, K. A. & Harding, J. M. & Burge, E. J. Ecological effects of the invasive parasite Loxothylacus panopaei on the flatback mud crab Eurypanopeus depressus with implications for estuarine communities. Bull. Mar. Sci. 90, 611–621 (2014).

    Article  Google Scholar 

  157. Wilkie, E. M., Bishop, M. J. & O’Connor, W. A. The density and spatial arrangement of the invasive oyster Crassostrea gigas determines its impact on settlement of native oyster larvae. Ecol. Evol. 3, 4851–4860 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Krassoi, F. R., Brown, K. R., Bishop, M. J., Kelaher, B. P. & Summerhayes, S. Condition-specific competition allows coexistence of competitively superior exotic oysters with native oysters. J. Anim. Ecol. 77, 5–15 (2008).

    Article  PubMed  Google Scholar 

  159. Bray, D. J., Green, I., Golicher, D. & Herbert, R. J. H. Spatial variation of trace metals within intertidal beds of native mussels (Mytilus edulis) and non-native Pacific oysters (Crassostrea gigas): implications for the food web? Hydrobiologia 757, 235–249 (2015).

    Article  CAS  Google Scholar 

  160. Green, D. S., Boots, B. & Crowe, T. P. Effects of non-indigenous oysters on microbial diversity and ecosystem functioning. PLoS ONE 7, e48410 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Green, D. S. & Crowe, T. P. Physical and biological effects of introduced oysters on biodiversity in an intertidal boulder field. Mar. Ecol. Prog. Ser. 482, 119–132 (2013).

    Article  Google Scholar 

  162. Wegener, A. R. & Buschbaum, C. Alien epibiont (Crassostrea gigas) impacts on native periwinkles (Littorina littorea). Aquat. Invasions 6, 281–290 (2011).

    Article  Google Scholar 

  163. Kochmann, J., Buschbaum, C., Volkenborn, N. & Reise, K. Shift from native mussels to alien oysters: differential effects of ecosystem engineers. J. Exp. Mar. Biol. Ecol. 364, 1–10 (2008).

    Article  Google Scholar 

  164. Green, D. S., Rocha, C. & Crowe, T. P. Effects of non-indigenous oysters on ecosystem processes vary with abundance and context. Ecosystems 16, 881–893 (2013).

    Article  CAS  Google Scholar 

  165. Nicastro, A., Bishop, M. J., Kelaher, B. P. & Benedetti-Cecchi, L. Export of non-native gastropod shells to a coastal lagoon: alteration of habitat structure has negligible effects on infauna. J. Exp. Mar. Biol. Ecol. 374, 31–36 (2009).

    Article  Google Scholar 

  166. Hietanen, S., Laine, A. O. & Lukkari, K. The complex effects of the invasive polychaetes Marenzelleria spp. on benthic nutrient dynamics. J. Exp. Mar. Biol. Ecol. 352, 89–102 (2007).

    Article  CAS  Google Scholar 

  167. Urban-Malinga, B., Warzocha, J. & Zalewski, M. Effects of the invasive polychaete Marenzelleria spp. on benthic processes and meiobenthos of a species-poor brackish system. J. Sea Res. 80, 25–34 (2013).

    Article  Google Scholar 

  168. Quintana, C. O., Kristensen, E. & Valdemarsen, T. Impact of the invasive polychaete Marenzelleria viridis on the biogeochemistry of sandy marine sediments. Biogeochemistry 115, 95–109 (2013).

    Article  CAS  Google Scholar 

  169. Kristensen, E., Hansen, T., Delefosse, M., Banta, G. T. & Quintana, C. O. Contrasting effects of the polychaetes Marenzelleria viridis and Nereis diversicolor on benthic metabolism and solute transport in sandy coastal sediment. Mar. Ecol. Prog. Ser. 425, 125–139 (2011).

    Article  CAS  Google Scholar 

  170. Yuan, W. S., Hoffman, E. A. & Walters, L. J. Effects of nonnative invertebrates on two life stages of the native eastern oyster Crassostrea virginica. Biol. Invasions 18, 689–701 (2016).

    Article  Google Scholar 

  171. Krumhansl, K. A., Lee, J. M. & Scheibling, R. E. Grazing damage and encrustation by an invasive bryozoan reduce the ability of kelps to withstand breakage by waves. J. Exp. Mar. Biol. Ecol. 407, 12–18 (2011).

    Article  Google Scholar 

  172. Roohi, A. et al. Impact of a new invasive ctenophore (Mnemiopsis leidyi) on the zooplankton community of the Southern Caspian sea. Mar. Ecol. 29, 421–434 (2008).

    Article  CAS  Google Scholar 

  173. Aldridge, D. C., Salazar, M., Serna, A. & Cock, J. Density-dependent effects of a new invasive false mussel, Mytilopsis trautwineana (Tryon 1866), on shrimp, Litopenaeus vannamei (Boone 1931), aquaculture in Colombia. Aquaculture 281, 34–42 (2008).

    Article  Google Scholar 

  174. Branch, G. M., Odendaal, F. & Robinson, T. B. Competition and facilitation between the alien mussel Mytilus galloprovincialis and indigenous species: moderation by wave action. J. Exp. Mar. Biol. Ecol. 383, 65–78 (2010).

    Article  Google Scholar 

  175. Sellheim, K., Stachowicz, J. J. & Coates, R. C. Effects of a nonnative habitat-forming species on mobile and sessile epifaunal communities. Mar. Ecol. Prog. Ser. 398, 69–80 (2010).

    Article  Google Scholar 

  176. Hanekom, N. Invasion of an indigenous Perna perna mussel bed on the south coast of South Africa by an alien mussel Mytilus galloprovincialis and its effect on the associated fauna. Biol. Invasions 10, 233–244 (2008).

    Article  Google Scholar 

  177. Chapman, M. G., People, J. & Blockley, D. Intertidal assemblages associated with naturalcorallina turf and invasive mussel beds. Biodivers. Conserv. 14, 1761–1776 (2005).

    Article  Google Scholar 

  178. Hollebone, A. L. & Hay, M. E. An invasive crab alters interaction webs in a marine community. Biol. Invasions 10, 347–358 (2008).

    Article  Google Scholar 

  179. Kimball, M. E. & Able, K. W. Nekton utilization of intertidal salt marsh creeks: tidal influences in natural Spartina, invasive Phragmites, and marshes treated for Phragmites removal. J. Exp. Mar. Biol. Ecol. 346, 87–101 (2007).

    Article  Google Scholar 

  180. Torchin, M. E. Native fish grows faster in the presence of a potential introduced competitor. Aquat. Invasions 5, 163–167 (2010).

    Article  Google Scholar 

  181. Richman, S. E. & Lovvorn, J. R. Relative foraging value to lesser scaup ducks of native and exotic clams from San Francisco Bay. Ecol. Appl. 14, 1217–1231 (2004).

    Article  Google Scholar 

  182. Brenneis, V. E. F., Sih, A. & de Rivera, C. E. Integration of an invasive consumer into an estuarine food web: direct and indirect effects of the New Zealand mud snail. Oecologia 167, 169–179 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Elise, S., Urbina-Barreto, I., Boadas-Gil, H., Galindo-Vivas, M. & Kulbicki, M. No detectable effect of lionfish (Pterois volitans and P. miles) invasion on a healthy reef fish assemblage in Archipelago Los Roques National Park, Venezuela. Mar. Biol. 162, 319–330 (2015).

    Article  Google Scholar 

  184. Black, A. N., Weimann, S. R., Imhoff, V. E., Richter, M. L. & Itzkowitz, M. A differential prey response to invasive lionfish, Pterois volitans: prey naivete and risk-sensitive courtship. J. Exp. Mar. Biol. Ecol. 460, 1–7 (2014).

    Article  Google Scholar 

  185. Albins, M. A. Effects of invasive Pacific red lionfish Pterois volitans versus a native predator on Bahamian coral-reef fish communities. Biol. Invasions 15, 29–43 (2013).

    Article  Google Scholar 

  186. Anton, A. et al. Prey naiveté to invasive lionfish (Pterois volitans) on Caribbean coral reefs. Mar. Ecol. Prog. Ser. 544, 257–269 (2016).

    Article  Google Scholar 

  187. Green, S. J. et al. Linking removal targets to the ecological effects of invaders: a predictive model and field test. Ecol. Appl. 24, 1311–1322 (2014).

    Article  PubMed  Google Scholar 

  188. Ingeman, K. E. & Webster, M. S. Native prey mortality increases but remains density-dependent following lionfish invasion. Mar. Ecol. Prog. Ser. 531, 241–252 (2015).

    Article  Google Scholar 

  189. Sweetman, A. K. et al. Impacts of exotic mangrove forests and mangrove deforestation on carbon remineralization and ecosystem functioning in marine sediments. Biogeosciences 7, 2129–2145 (2010).

    Article  CAS  Google Scholar 

  190. Bidegain, G. & Juanes, J. A. Does expansion of the introduced Manila clam Ruditapes philippinarum cause competitive displacement of the European native clam Ruditapes decussatus? J. Exp. Mar. Biol. Ecol. 445, 44–52 (2013).

    Article  Google Scholar 

  191. Holloway, M. G. & Keough, M. J. An introduced polychaete affects recruitment and larval abundance of sessile invertebrates. Ecol. Appl. 12, 1803–1823 (2002).

    Article  Google Scholar 

  192. Holloway, M. G. & Keough, M. J. Effects of an introduced polychaete, Sabella spallanzanii, on the development of epifaunal assemblages. Mar. Ecol. Prog. Ser. 236, 137–154 (2002).

    Article  Google Scholar 

  193. Robinson, T. B. & Swart, C. Distribution and impact of the alien anemone Sagartia ornata in the West Coast National Park. Koedoe 57, a1246 (2015).

    Article  Google Scholar 

  194. Salvaterra, T., Green, D. S., Crowe, T. P. & O’Gorman, E. J. Impacts of the invasive alga Sargassum muticum on ecosystem functioning and food web structure. Biol. Invasions 15, 2563–2576 (2013).

    Article  Google Scholar 

  195. Lang, A. C. & Buschbaum, C. Facilitative effects of introduced Pacific oysters on native macroalgae are limited by a secondary invader, the seaweed Sargassum muticum. J. Sea Res. 63, 119–128 (2010).

    Article  Google Scholar 

  196. Sánchez, Í. & Fernández, C. Impact of the invasive seaweed Sargassum Muticum (phaeophyta) on an intertidal macroalgal assemblage1. J. Phycol. 41, 923–930 (2005).

    Article  Google Scholar 

  197. Rossi, F., Incera, M., Callier, M. & Olabarria, C. Effects of detrital non-native and native macroalgae on the nitrogen and carbon cycling in intertidal sediments. Mar. Biol. 158, 2705–2715 (2011).

    Article  CAS  Google Scholar 

  198. Britton-Simmons, K. H., Pister, B., Sánchez, I. & Okamoto, D. Response of a native, herbivorous snail to the introduced seaweed Sargassum muticum. Hydrobiologia 661, 187–196 (2011).

    Article  Google Scholar 

  199. Vye, S. R., Emmerson, M. C., Arenas, F., Dick, J. T. A. & O’Connor, N. E. Stressor intensity determines antagonistic interactions between species invasion and multiple stressor effects on ecosystem functioning. Oikos 124, 1005–1012 (2015).

    Article  Google Scholar 

  200. Rodil, I. F., Olabarria, C., Lastra, M. & López, J. Differential effects of native and invasive algal wrack on macrofaunal assemblages inhabiting exposed sandy beaches. J. Exp. Mar. Biol. Ecol. 358, 1–13 (2008).

    Article  Google Scholar 

  201. Vaz‐Pinto, F., Olabarria, C. & Arenas, F. Ecosystem functioning impacts of the invasive seaweed Sargassum muticum (Fucales, Phaeophyceae). J. Phycol. 50, 108–116 (2014).

    Article  PubMed  Google Scholar 

  202. Buschbaum, C., Chapman, A. S. & Saier, B. How an introduced seaweed can affect epibiota diversity in different coastal systems. Mar. Biol. 148, 743–754 (2006).

    Article  Google Scholar 

  203. White, L. F. & Shurin, J. B. Density dependent effects of an exotic marine macroalga on native community diversity. J. Exp. Mar. Biol. Ecol. 405, 111–119 (2011).

    Article  Google Scholar 

  204. Viejo, R. M. Mobile epifauna inhabiting the invasive Sargassum muticum and two local seaweeds in northern Spain. Aquat. Bot. 64, 131–149 (1999).

    Article  Google Scholar 

  205. Tang, Y. et al. Ecological influence of exotic plants of Sonneratia apetala on understory macrofauna. Acta Oceanol. Sin. 31, 115–125 (2012).

    Article  Google Scholar 

  206. Ma, Z., Gan, X., Cai, Y., Chen, J. & Li, B. Effects of exotic Spartina alterniflora on the habitat patch associations of breeding saltmarsh birds at Chongming Dongtan in the Yangtze River estuary, China. Biol. Invasions 13, 1673–1686 (2011).

    Article  Google Scholar 

  207. Gan, X. et al. Potential impacts of invasive Spartina alterniflora on spring bird communities at Chongming Dongtan, a Chinese wetland of international importance. Estuar. Coast. Shelf Sci. 83, 211–218 (2009).

    Article  Google Scholar 

  208. Zhou, H.-X., Liu, J.-E., Zhou, J. & Qin, P. Effect of an alien species Spartina alterniflora Loisel on biogeochemical processes of intertidal ecosystem in the Jiangsu coastal region, China. Pedosphere 18, 77–85 (2008).

    Article  Google Scholar 

  209. Neira, C., Levin, L. A., Grosholz, E. D. & Mendoza, G. Influence of invasive Spartina growth stages on associated macrofaunal communities. Biol. Invasions 9, 975–993 (2007).

    Article  Google Scholar 

  210. Chen, H., Zhang, P., Li, B. & Wu, J. Invasive cordgrass facilitates epifaunal communities in a Chinese marsh. Biol. Invasions 17, 205–217 (2015).

    Article  Google Scholar 

  211. Ma, Z., Gan, X., Choi, C.-Y. & Li, B. Effects of invasive cordgrass on presence of Marsh Grassbird in an area where it is not native. Conserv. Biol. J. Soc. Conserv. Biol. 28, 150–158 (2014).

    Article  Google Scholar 

  212. Tong, C. et al. Contrasting nutrient stocks and litter decomposition in stands of native and invasive species in a sub-tropical estuarine marsh. Environ. Res. 111, 909–916 (2011).

    Article  CAS  PubMed  Google Scholar 

  213. Qin, H. et al. Effects of invasive cordgrass on crab distributions and diets in a Chinese salt marsh. Mar. Ecol. Prog. Ser. 415, 177–187 (2010).

    Article  Google Scholar 

  214. Wu, Y.-T. et al. Effects of saltmarsh invasion by Spartina alterniflora on arthropod community structure and diets. Biol. Invasions 11, 635–649 (2009).

    Article  Google Scholar 

  215. Yuan, J. et al. Shifts in methanogen community structure and function across a coastal marsh transect: effects of exotic Spartina alterniflora invasion. Sci. Rep. 6, 18777 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Zhou, H.-X., Liu, J. & Qin, P. Impacts of an alien species (Spartina alterniflora) on the macrobenthos community of Jiangsu coastal inter-tidal ecosystem. Ecol. Eng. 35, 521–528 (2009).

    Article  Google Scholar 

  217. Cutajar, J., Shimeta, J. & Nugegoda, D. Impacts of the invasive grass Spartina anglica on benthic macrofaunal assemblages in a temperate Australian saltmarsh. Mar. Ecol. Prog. Ser. 464, 107–120 (2012).

    Article  Google Scholar 

  218. Hacker, S. D. & Dethier, M. N. Community modification by a grass invader has differing impacts for marine habitats. Oikos 113, 279–286 (2006).

    Article  Google Scholar 

  219. Gooden, B. & French, K. Impacts of alien plant invasion on native plant communities are mediated by functional identity of resident species, not resource availability. Oikos 124, 298–306 (2015).

    Article  Google Scholar 

  220. Gooden, B. & French, K. Non-interactive effects of plant invasion and landscape modification on native communities. Divers. Distrib. 20, 626–639 (2014).

    Article  Google Scholar 

  221. Pettay, D. T., Wham, D. C., Smith, R. T., Iglesias-Prieto, R. & LaJeunesse, T. C. Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella. Proc. Natl Acad. Sci. USA 112, 7513–7518 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Miranda, R. J., Cruz, I. C. S. & Barros, F. Effects of the alien coral Tubastraea tagusensis on native coral assemblages in a southwestern Atlantic coral reef. Mar. Biol. 163, 45 (2016).

    Article  CAS  Google Scholar 

  223. Irigoyen, A. J., Trobbiani, G., Sgarlatta, M. P. & Raffo, M. P. Effects of the alien algae Undaria pinnatifida (Phaeophyceae, Laminariales) on the diversity and abundance of benthic macrofauna in Golfo Nuevo (Patagonia, Argentina): potential implications for local food webs. Biol. Invasions 13, 1521–1532 (2011).

    Article  Google Scholar 

  224. Forrest, B. M. & Taylor, M. D. Assessing invasion impact: survey design considerations and implications for management of an invasive marine plant. Biol. Invasions 4, 375–386 (2002).

    Article  Google Scholar 

  225. South, P. M. et al. Transient effects of an invasive kelp on the community structure and primary productivity of an intertidal assemblage. Mar. Freshw. Res. 67, 103–112 (2016).

    Article  Google Scholar 

  226. Gestoso, I., Arenas, F. & Olabarria, C. Biotic resistance and facilitation of a non-indigenous mussel vary with environmental context. Mar. Ecol. Prog. Ser. 506, 163–173 (2014).

    Article  Google Scholar 

  227. Hendrickx, J. P., Creese, R. G. & Gribben, P. E. Impacts of a non-native gastropod with a limited distribution; less conspicuous invaders matter too. Mar. Ecol. Prog. Ser. 537, 151–162 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the following individuals: S. Ghani for conducting the network diagrams for Fig. 2, using resources and services at the Visualization Core Lab at KAUST; I. Ferri for advice on the design of Fig. 5; and C. Nelson for her assistance organizing the Invasive Species Workshop at KAUST. This research was supported by King Abdullah University of Science and Technology (KAUST) through baseline funding to C.M.D., by Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020) (grant no. 659246) to S.B., by the Ministry of Economy and Competitiveness, Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación) (grant no. FJCI – 2016 – 30728) to S.B., by the Ministry of Economy and Competitiveness, Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación) (grant no. CGL 2015 – 71809 – P) to N.M., J.S.-G. and S.B., and by the ARC Centre of Excellence for Coral Reef Studies (grant no. CE 140100020) to J.M.P.

Author information

Authors and Affiliations

Authors

Contributions

C.M.D., A.A., C.E.L. and N.R.G. conceived and designed the study. A.A., N.R.G., C.E.L., E.T.A., S.B., J.C., D.K.-J., N.M., P.M., J.M.P. and J.S.-G. constructed the dataset. A.A. and N.R.G. performed the data analyses with contributions from all co-authors. All authors contributed to writing and improving the manuscript and approved the submission.

Corresponding author

Correspondence to Andrea Anton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–4 and Supplementary Tables 1–5

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anton, A., Geraldi, N.R., Lovelock, C.E. et al. Global ecological impacts of marine exotic species. Nat Ecol Evol 3, 787–800 (2019). https://doi.org/10.1038/s41559-019-0851-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-019-0851-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing