Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Temperate airborne grass pollen defined by spatio-temporal shifts in community composition

Abstract

Grass pollen is the world’s most harmful outdoor aeroallergen. However, it is unknown how airborne pollen assemblages change across time and space. Human sensitivity varies between different species of grass that flower at different times, but it is not known whether temporal turnover in species composition match terrestrial flowering or whether species richness steadily accumulates over the grass pollen season. Here, using targeted, high-throughput sequencing, we demonstrate that all grass genera displayed discrete, temporally restricted peaks of incidence, which varied with latitude and longitude throughout Great Britain, revealing that the taxonomic composition of grass pollen exposure changes substantially across the grass pollen season.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Locations where pollen was collected and the temporal concentrations and composition of Poaceae.
Fig. 2: Abundance of the most common taxa of airborne grass pollen throughout the grass pollen season.

Similar content being viewed by others

Data availability

All sequence data are available at the Sequence Read Archive (SRA) using the project accession number SUB4136142. Archived sequence data were used to generate Fig. 2 and Supplementary Figs. 16, 810). Data on first flowering dates used in Supplementary Fig. 5 were obtained from Nature’s Calendar, Woodland Trust and are available upon request. The sequence analysis pipeline is available at https://github.com/colford/nbgw-plant-illumina-pipeline.

References

  1. Blackley, C. H. Experimental Researches on the Causes and Nature of Catarrhus Æstivus (hay-fever Or Hay-asthma) (Bailliere, 1873).

  2. Marks, G., Pearce, N., Strachan, D. & Asher, I. The Global Asthma Report 2014 16–21 (Global Asthma Network, 2014).

  3. Bauchau, V. Eur. Respir. J. 24, 758–764 (2004).

    Article  CAS  Google Scholar 

  4. Bousquet, P.-J. et al. Allergy 62, 301–309 (2007).

    Article  Google Scholar 

  5. García‐Mozo, H. Allergy 72, 1849–1858 (2017).

    Article  Google Scholar 

  6. Emberlin, J. et al. Aerobiologia 16, 373–379 (2000).

    Article  Google Scholar 

  7. Emberlin, J. et al. Grana 33, 94–99 (1994).

    Article  Google Scholar 

  8. Mander, L., Li, M., Mio, W., Fowlkes, C. C. & Punyasena, S. W. Proc. R. Soc. Lond. B 280, 20131905 (2013).

    Article  Google Scholar 

  9. Kmenta, M. et al. World Allergy Organ. J. 10, 31 (2017).

    Article  Google Scholar 

  10. Cope, C. & Gray, A. Grasses of the British Isles (Botanical Society of the British Isles, 2009)..

  11. Estrella, N., Menzel, A., Krämer, U. & Behrendt, H. Int. J. Biometeorol. 51, 49–59 (2006).

    Article  Google Scholar 

  12. Skjøth, C. A., Sommer, J., Stach, A., Smith, M. & Brandt, J. Clin. Exp. Allergy 37, 1204–1212 (2008).

    Article  Google Scholar 

  13. McInnes, R. N. et al. Sci. Total Environ. 599–600, 483–499 (2017).

    Article  Google Scholar 

  14. van Ree, R., van Leeuwen, W. A. & Aalberse, R. C. J. Allergy Clin. Immunol. 102, 184–190 (1998).

    Article  Google Scholar 

  15. Petersen, A. et al. J. Allergy Clin. Immunol. 107, 856–862 (2001).

    Article  CAS  Google Scholar 

  16. Jung, S. et al. PLoS ONE 13, 1–12 (2018).

    Google Scholar 

  17. Moingeon, P., Peltre, G. & Bergmann, K.-C. Clin. Exp. Allergy Rev. 8, 12–14 (2008).

    Article  Google Scholar 

  18. de Weger, L. A. et al. Clin. Transl. Allergy 1, 18 (2011).

    Article  Google Scholar 

  19. Kraaijeveld, K. et al. Mol. Ecol. Resour. 15, 8–16 (2015).

    Article  CAS  Google Scholar 

  20. Korpelainen, H. & Pietiläinen, M. Nord. J. Bot. 35, 602–608 (2017).

    Article  Google Scholar 

  21. Deiner, K. et al. Mol. Ecol. 26, 5872–5895 (2017).

    Article  Google Scholar 

  22. Creer, S. et al. Methods Ecol. Evol. 7, 1008–1018 (2016).

    Article  Google Scholar 

  23. de Vere, N. et al. PLoS ONE 7, e37945 (2012).

    Article  Google Scholar 

  24. England, P. H. GP In-Hours Consultations Bulletin: 25 August 2016 Week 33 (PHE Real-time Syndromic Surveillance Team, 2016).

  25. Frame, J. & Laidlaw, A. S. Improved Grassland Management (The Crowood Press, 2011).

  26. RGCL. Recommended Grass and Clover Lists (British Grassland Society, 2017).

  27. Rousseau, D.-D. et al. Geophys. Res. Lett. 30, 1765 (2003).

  28. D'Amato, G. et al. Allergy 62, 976–990 (2007).

    Article  CAS  Google Scholar 

  29. West, J. S. & Kimber, R. B. E. Ann. Appl. Biol. 166, 4–17 (2015).

    Article  Google Scholar 

  30. Hirst, J. M. Ann. App. Biol. 39, 257–265 (1952).

    Article  Google Scholar 

  31. Adams-Groom, B., Emberlin, J., Corden, J., Millington, W. & Mullins, J. Aerobiologia 18, 117–123 (2002).

    Article  Google Scholar 

  32. Skjøth, C. A., Baker, P., Sadyś, M. & Adams-Groom, B. Urban Climate 14, 414–428 (2015).

    Article  Google Scholar 

  33. Galán, C. et al. Aerobiologia 33, 293–295 (2017).

    Article  Google Scholar 

  34. Hawkins, J. et al. PLoS ONE 10, e0134735 (2015).

    Article  Google Scholar 

  35. Kress, W. J. & Erickson, D. L. PLoS ONE 2, e508 (2007).

    Article  Google Scholar 

  36. Miya, M. et al. R. Soc. Open Sci. 2, 150088 (2015).

    Article  CAS  Google Scholar 

  37. de Vere, N. et al. Sci. Rep. 7, 42838 (2017).

    Article  Google Scholar 

  38. Bolger, A. M., Lohse, M. & Usadel, B. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  Google Scholar 

  39. Magoč, T. & Salzberg, S. L. Bioinformatics 27, 2957–2963 (2011).

    Article  Google Scholar 

  40. Stace, C. New Flora of the British Isles (Cambridge Univ. Press, 2010).

  41. Camacho, C. et al. BMC Bioinformatics 10, 421 (2008).

    Article  Google Scholar 

  42. Wang, Y., Naumann, U., Wright, S. T. & Warton, D. I. Methods Ecol. Evol. 3, 471–474 (2012).

    Article  Google Scholar 

  43. McMurdie, P. J. & Holmes, S. PLoS Comput. Biol. 10, e1003531 (2014).

    Article  Google Scholar 

  44. Dixon, P. J. Veg. Sci. 14, 927–930 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Kenny, P. Koldkjær, R. Gregory and A. Lucaci for sequencing support; J. Winn for ArcGIS assistance with Fig. 1; W. Grail and the technical support staff at Bangor University; the Botanic Gardens Conservation International (BGCI) for access to the list of plant collections in the National Gardens in the United Kingdom and Ireland; the Met Office network for providing additional observational grass pollen count data; the Woodland Trust and the Centre for Ecology & Hydrology for supplying the UK Phenology Network data and the citizen scientists who have contributed to the latter scheme. We acknowledge the computational services and support of the Supercomputing Wales project, which is part-funded by the European Regional Development Fund (ERDF) via Welsh Government. This work was supported by the Natural Environment Research Council (https://nerc.ukri.org/), awarded to S.C. (NE/N003756/1), C.A.S. (NE/N002431/1), N.J.O. (NE/N002105/1), and G.W.G., N.d.V. and M.H. (NE/N001710/1). IBERS Aberystwyth receives strategic funding from the BBSRC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

S.C., N.d.V., G.W.G., R.N.M., N.J.O., C.A.S., Y.C., B.W.W. and G.L.B. conceived and designed the study; B.A.-G., G.L.B., G.M.P., A.E., R.N., S.P., K.S. and N.S. collected samples and counted pollen; G.L.B. performed laboratory work, supported by S.C.; N.d.V., C.P., C.R.F., L.J., G.L.B and S.C. contributed methods; C.A. and D.B.R. contributed materials; C.P. and G.L.B. analysed the data; and G.L.B., C.P. and S.C. produced the first draft of the manuscript. All authors contributed substantially to the final submitted manuscript.

Corresponding authors

Correspondence to Georgina L. Brennan or Simon Creer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Figures 1–10, Supplementary Tables 1–6 and Supplementary References

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brennan, G.L., Potter, C., de Vere, N. et al. Temperate airborne grass pollen defined by spatio-temporal shifts in community composition. Nat Ecol Evol 3, 750–754 (2019). https://doi.org/10.1038/s41559-019-0849-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-019-0849-7

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene