Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Air temperature optima of vegetation productivity across global biomes


The global distribution of the optimum air temperature for ecosystem-level gross primary productivity (\({\it{T}}_{{\mathrm{opt}}}^{{\mathrm{eco}}}\)) is poorly understood, despite its importance for ecosystem carbon uptake under future warming. We provide empirical evidence for the existence of such an optimum, using measurements of in situ eddy covariance and satellite-derived proxies, and report its global distribution. \(T_{\mathrm{opt}}^{\mathrm{eco}}\) is consistently lower than the physiological optimum temperature of leaf-level photosynthetic capacity, which typically exceeds 30 °C. The global average \(T_{\mathrm{opt}}^{\mathrm{eco}}\) is estimated to be 23 ± 6 °C, with warmer regions having higher \(T_{\mathrm{opt}}^{\mathrm{eco}}\) values than colder regions. In tropical forests in particular, \(T_{\mathrm{opt}}^{\mathrm{eco}}\) is close to growing-season air temperature and is projected to fall below it under all scenarios of future climate, suggesting a limited safe operating space for these ecosystems under future warming.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Distribution of \({\it{T}}_{{\rm{opt}}}^{{\rm{eco}}}\) for vegetation productivity derived from flux-tower sites and satellite-based data for near-infrared reflectance of vegetation (NIRV).
Fig. 2: Relationship between \({\boldsymbol{T}}_{{\rm{max}}\,{\rm{gs}}}^{{\rm{air}}}\) and \({\boldsymbol{T}}_{{\boldsymbol{opt}}}^{{\boldsymbol{eco}}}\) across vegetation types.
Fig. 3: Change with latitude in \({\boldsymbol{T}}_{{\rm{opt}}}^{{\rm{eco}}}\) and \({\boldsymbol{T}}_{{\boldsymbol{max}}\,{\boldsymbol{gs}}}^{{\boldsymbol{air}}}\).

Data availability

All data are available in the main text or the supplementary information. All computer codes used in this study can be provided by the corresponding author upon reasonable request.


  1. 1.

    Berry, J. & Bjorkman, O. Photosynthetic response and adaptation to temperature in higher plants. Ann. Rev. Plant Physio. 31, 491–543 (1980).

    Article  Google Scholar 

  2. 2.

    Hughes, L. Biological consequences of global warming: is the signal already apparent? Trends Ecol. Evol. 15, 56–61 (2000).

    CAS  Article  Google Scholar 

  3. 3.

    Niu, S. et al. Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China. Environ. Exp. Bot. 63, 91–101 (2008).

    Article  Google Scholar 

  4. 4.

    Way, D. A. & Yamori, W. Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynth. Res. 119, 89–100 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Kattge, J. & Knorr, W. Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant Cell Environ. 30, 1176–1190 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    Lloyd, J. & Farquhar, G. D. Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philos. T. Roy. Soc. B 363, 1811–1817 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    Medlyn, B. et al. Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ. 25, 1167–1179 (2002).

    CAS  Article  Google Scholar 

  8. 8.

    Field, C. B., Randerson, J. T. & Malmström, C. M. Global net primary production: combining ecology and remote sensing. Remote Sens. Environ. 51, 74–88 (1995).

    Article  Google Scholar 

  9. 9.

    Niinemets, Ü. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82, 453–469 (2001).

    Article  Google Scholar 

  10. 10.

    Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 292–297 (2013).

    Article  Google Scholar 

  11. 11.

    Tyree, M. T. & Dixon, M. A. Water stress induced cavitation and embolism in some woody plants. Physiol. Plantarum 66, 397–405 (1986).

    Article  Google Scholar 

  12. 12.

    Yin, X. & Struik, P. C3 and C4 photosynthesis models: an overview from the perspective of crop modelling. NJAS-Wagen. J. Life Sc. 57, 27–38 (2009).

    Article  Google Scholar 

  13. 13.

    Smith, N. G., Malyshev, S. L., Shevliakova, E., Kattge, J. & Dukes, J. S. Foliar temperature acclimation reduces simulated carbon sensitivity to climate. Nat. Clim. Change 6, 407–411 (2016).

    Google Scholar 

  14. 14.

    Mercado, L. M. et al. Large sensitivity in land carbon storage due to geographical and temporal variation in the thermal response of photosynthetic capacity. New Phytol. 218, 1462–1477 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    Corlett, R. T. Impacts of warming on tropical lowland rainforests. Trends Ecol. Evol. 26, 606–613 (2011).

    Article  Google Scholar 

  16. 16.

    Doughty, C. E. & Goulden, M. L. Are tropical forests near a high temperature threshold? J. Geophys. Res. Biogeo. 113, G00B07 (2008).

    Google Scholar 

  17. 17.

    Baldocchi, D. et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. B. Am. Meteorol. Soc. 82, 2415–2434 (2001).

    Article  Google Scholar 

  18. 18.

    Niu et al. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytol. 194, 775–783 (2012).

    Article  Google Scholar 

  19. 19.

    Badgley, G., Field, C. B. & Berry, J. A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 3, e1602244 (2017).

    Article  Google Scholar 

  20. 20.

    Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).

    Article  Google Scholar 

  21. 21.

    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).

    Article  Google Scholar 

  22. 22.

    Joiner, J., Yoshida, Y., Vasilkov, A. & Middleton, E. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 8, 637–651 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    Ma, S. et al. Photosynthetic responses to temperature across leaf-canopy-ecosystem scales: a 15-year study in a Californian oak-grass savanna. Photosynth. Res. 132, 277–291 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. New Phytol. 218, 1430–1449 (2018).

    Article  Google Scholar 

  25. 25.

    Bunce, J. A. Acclimation of photosynthesis to temperature in eight cool and warm climate herbaceous C3 species: temperature dependence of parameters of a biochemical photosynthesis model. Photosynth. Res. 63, 59–67 (2000).

    CAS  Article  Google Scholar 

  26. 26.

    Han, Q., Kawasaki, T., Nakano, T. & Chiba, Y. Spatial and seasonal variability of temperature responses of biochemical photosynthesis parameters and leaf nitrogen content within a Pinus densiflora crown. Tree Physiol. 24, 737–744 (2004).

    CAS  Article  Google Scholar 

  27. 27.

    Harley, P., Thomas, R., Reynolds, J. & Strain, B. Modelling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ. 15, 271–282 (1992).

    CAS  Article  Google Scholar 

  28. 28.

    Onoda, Y., Hikosaka, K. & Hirose, T. The balance between RuBP carboxylation and RuBP regeneration: a mechanism underlying the interspecific variation in acclimation of photosynthesis to seasonal change in temperature. Funct. Plant Biol. 32, 903–910 (2005).

    CAS  Article  Google Scholar 

  29. 29.

    Walcroft, A., Le Roux, X., Diaz-Espejo, A., Dones, N. & Sinoquet, H. Effects of crown development on leaf irradiance, leaf morphology and photosynthetic capacity in a peach tree. Tree Physiol. 22, 929–938 (2002).

    Article  Google Scholar 

  30. 30.

    Wang, K. Y., Kellomäki, S. & Laitinen, K. Acclimation of photosynthetic parameters in Scots pine after three years exposure to elevated temperature and CO2. Agr. Forest Meteorol. 82, 195–217 (1996).

    Article  Google Scholar 

  31. 31.

    Vaz, M. et al. Drought-induced photosynthetic inhibition and autumn recovery in two Mediterranean oak species (Quercus ilex and Quercus suber). Tree Physiol. 30, 946–956 (2010).

    CAS  Article  Google Scholar 

  32. 32.

    Zhou, L. et al. Responses of photosynthetic parameters to drought in subtropical forest ecosystem of China. Sci. Rep. 5, 18254 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Doughty, C. E. & Goulden, M. L. Seasonal patterns of tropical forest leaf area index and CO2 exchange. J. Geophys. Res. Biogeo. 113, G00B06 (2008).

    Google Scholar 

  34. 34.

    Wu, J. et al. Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales. Glob. Change Biol. 23, 1240–1257 (2017).

    Article  Google Scholar 

  35. 35.

    Gunderson, C. A., O’Hara, K. H., Campion, C. M., Walker, A. V. & Edwards, N. T. Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate. Glob. Change Biol. 16, 2272–2286 (2010).

    Article  Google Scholar 

  36. 36.

    Mooney, H. A., Björkman, O. & Collatz, G. J. Photosynthetic acclimation to temperature in the desert shrub, Larrea divaricata I. Carbon dioxide exchange characteristics of intact leaves. Plant Physiol. 61, 406–410 (1978).

    CAS  Article  Google Scholar 

  37. 37.

    Yuan, W. et al. Thermal adaptation of net ecosystem exchange. Biogeosciences 8, 1453–1463 (2011).

    Article  Google Scholar 

  38. 38.

    Sage, R. F. & Kubien, D. S. The temperature response of C3 and C4 photosynthesis. Plant Cell Environ. 30, 1086–1106 (2007).

    CAS  Article  Google Scholar 

  39. 39.

    Armond, P. A., Schreiber, U. & Björkman, O. Photosynthetic acclimation to temperature in the desert shrub, Larrea divaricata: II. Light-harvesting efficiency and electron transport. Plant Physiol. 61, 411–415 (1978).

    CAS  Article  Google Scholar 

  40. 40.

    Badger, M., Björkman, O. & Armond, P. An analysis of photosynthetic response and adaptation to temperature in higher plants: temperature acclimation in the desert evergreen Nerium oleander L. Plant Cell Environ. 5, 85–99 (1982).

    CAS  Google Scholar 

  41. 41.

    Atkin, O., Scheurwater, I. & Pons, T. High thermal acclimation potential of both photosynthesis and respiration in two lowland Plantago species in contrast to an alpine congeneric. Glob. Change Biol. 12, 500–515 (2006).

    Article  Google Scholar 

  42. 42.

    Doughty, C. E. An in situ leaf and branch warming experiment in the Amazon. Biotropica 43, 658–665 (2011).

    Article  Google Scholar 

  43. 43.

    Koch, G. W., Amthor, J. S. & Goulden, M. L. Diurnal patterns of leaf photosynthesis, conductance and water potential at the top of a lowland rain forest canopy in Cameroon: measurements from the Radeau des Cimes. Tree Physiol. 14, 347–360 (1994).

    CAS  Article  Google Scholar 

  44. 44.

    Tribuzy, E. S. Variações da temperatura foliar do dossel eo seu efeito na taxa assimilatória de CO2 na Amazônia Central. PhD thesis, Univ. de São Paulo (2005).

  45. 45.

    White, A., Cannell, M. G. & Friend, A. D. CO2 stabilization, climate change and the terrestrial carbon sink. Glob. Change Biol. 6, 817–833 (2000).

    Article  Google Scholar 

  46. 46.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  47. 47.

    Xu, L. et al. Temperature and vegetation seasonality diminishment over northern lands. Nat. Clim. Change 3, 581 (2013).

    Article  Google Scholar 

  48. 48.

    Sendall, K. M. et al. Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming. Glob. Change Biol. 21, 1342–1357 (2015).

    Article  Google Scholar 

  49. 49.

    Likens, G. E. Long-Term Studies in Ecology (Springer, New York, 1989).

  50. 50.

    Jung, M. et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeo. 116, G00J07 (2011).

    Article  Google Scholar 

  51. 51.

    Lester, R. E., Close, P. G., Barton, J. L., Pope, A. J. & Brown, S. C. Predicting the likely response of data-poor ecosystems to climate change using space-for-time substitution across domains. Glob. Change Biol. 20, 3471–3481 (2014).

    Article  Google Scholar 

  52. 52.

    Cavaleri, M. A., Reed, S. C., Smith, W. K. & Wood, T. E. Urgent need for warming experiments in tropical forests. Glob. Change Biol. 21, 2111–2121 (2015).

    Article  Google Scholar 

  53. 53.

    Papale, D. et al. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3, 571–583 (2006).

    CAS  Article  Google Scholar 

  54. 54.

    Myneni, R. B., Ramakrishna, R., Nemani, R. & Running, S. W. Estimation of global leaf area index and absorbed PAR using radiative transfer models. IEEE Trans. Geosci. Remote Sens. 35, 1380–1393 (1997).

    Article  Google Scholar 

  55. 55.

    Maisongrande, P., Duchemin, B. & Dedieu, G. VEGETATION/SPOT: an operational mission for the Earth monitoring; presentation of new standard products. Int. J. Remote Sens. 25, 9–14 (2004).

    Article  Google Scholar 

  56. 56.

    Vermote, E. F., El Saleous, N. Z. & Justice, C. O. Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sens. Environ. 83, 97–111 (2002).

    Article  Google Scholar 

  57. 57.

    Rahman, A. F., Sims, D. A., Cordova, V. D. & El‐Masri, B. Z. Potential of MODIS EVI and surface temperature for directly estimating per-pixel ecosystem C fluxes. Geophys. Res. Lett. 32, 156–171 (2005).

    Article  Google Scholar 

  58. 58.

    Frankenberg, C. et al. New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38, 351–365 (2011).

    Article  Google Scholar 

  59. 59.

    Lee, J. E. et al. Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence. Proc. Roy. Soc. B 280, 176–188 (2013).

    Google Scholar 

  60. 60.

    Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Köppen–Geiger climate classification updated. Meteorologische Z. 15, 259–263 (2006).

    Article  Google Scholar 

  61. 61.

    Qin, J., Yang, K., Liang, S. & Guo, X. The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change 97, 321–327 (2009).

    Article  Google Scholar 

  62. 62.

    Liu, D. et al. Contrasting responses of grassland water and carbon exchanges to climate change between Tibetan Plateau and Inner Mongolia. Agr. Forest Meteorol. 249, 163–175 (2018).

    Article  Google Scholar 

  63. 63.

    Wan, Z. & Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 34, 892–905 (1996).

    Article  Google Scholar 

  64. 64.

    Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 701–795 (2016).

    Article  Google Scholar 

  65. 65.

    Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).

    Article  Google Scholar 

  66. 66.

    Jones, P. W. First-and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Weather Rev. 127, 2204–2210 (1999).

    Article  Google Scholar 

  67. 67.

    Battaglia, M., Beadle, C. & Loughhead, S. Photosynthetic temperature responses of Eucalyptus globulus and Eucalyptus nitens. Tree Physiol. 16, 81–89 (1996).

    Article  Google Scholar 

  68. 68.

    Lin, Y. S., Medlyn, B. E. & Ellsworth, D. S. Temperature responses of leaf net photosynthesis: the role of component processes. Tree Physiol. 32, 219–231 (2012).

    CAS  Article  Google Scholar 

  69. 69.

    Farquhar, Gv, von Caemmerer, Sv & Berry, J. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    CAS  Article  Google Scholar 

  70. 70.

    Baker, N. R. Photosynthesis and the Environment (Kluwer Academic Publishers, 2006).

  71. 71.

    Helliker, B. R. & Richter, S. L. Subtropical to boreal convergence of tree-leaf temperatures. Nature 454, 511 (2008).

    CAS  Article  Google Scholar 

  72. 72.

    Michaletz, S. T. et al. The energetic and carbon economic origins of leaf thermoregulation. Nat. Plants 2, 16129 (2016).

    CAS  Article  Google Scholar 

  73. 73.

    Lian, X. et al. Spatiotemporal variations in the difference between satellite-observed daily maximum land surface temperature and station‐based daily maximum near-surface air temperature. J. Geophys. Res. Atmos. 122, 2254–2268 (2017).

    Article  Google Scholar 

Download references


This study was supported by the Strategic Priority Research Program (A) of the Chinese Academy of Sciences (Grant No. XDA20050101), the National Natural Science Foundation of China (41530528) and the National Key R&D Program of China (2017YFA0604702). This work used eddy covariance data acquired by the FLUXNET community and in particular by the following networks: AmeriFlux (US Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program (DE-FG02-04ER63917 and DE-FG02-04ER63911)), AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada (supported by CFCAS, NSERC, BIOCAP, Environment Canada and NRCan), GreenGrass, KoFlux, LBA, NECC, OzFlux, TCOS-Siberia and USCCC. We acknowledge the financial support to the eddy covariance data harmonization provided by CarboEuropeIP, FAO-GTOS-CO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Université Laval and Environment Canada, and the US Department of Energy and the database development and technical support from Berkeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory, University of California-Berkeley and University of Virginia. P.C., J.P. and I.A.J. would like to acknowledge the financial support from the European Research Council Synergy Grant No. ERC-SyG-2013-610028 IMBALANCE-P. P.C. was also supported by the French Agence Nationale de la Recherche Convergence Lab Changement climatique et usage des terres (CLAND). I.A.J. acknowledges the Methusalem funding of the Flemish Community through the Research Council of the University of Antwerp. T.F.K. was supported by the NASA Terrestrial Ecology Program IDS Award NNH17AE86I. J.M. and X.S. are supported by the Terrestrial Ecosystem Science Scientific Focus Area project funded through the Terrestrial Ecosystem Science Program in the Climate and Environmental Sciences Division of the Biological and Environmental Research Program in the US Department of Energy Office of Science. Oak Ridge National Laboratory is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC05-00OR22725. M.C. was supported by a grant overseen by the French National Research Agency (ANR) as part of the Investissements d’Avenir program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE).

Author information




S. Piao designed the research. M. H. performed the analysis. S. Piao drafted the paper. All authors contributed to the interpretation of the results and the text.

Corresponding author

Correspondence to Shilong Piao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–22, Supplementary Tables 1 and 2 and Supplementary References

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Piao, S., Ciais, P. et al. Air temperature optima of vegetation productivity across global biomes. Nat Ecol Evol 3, 772–779 (2019).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing