Abstract

The global distribution of the optimum air temperature for ecosystem-level gross primary productivity (\({\it{T}}_{{\mathrm{opt}}}^{{\mathrm{eco}}}\)) is poorly understood, despite its importance for ecosystem carbon uptake under future warming. We provide empirical evidence for the existence of such an optimum, using measurements of in situ eddy covariance and satellite-derived proxies, and report its global distribution. \(T_{\mathrm{opt}}^{\mathrm{eco}}\) is consistently lower than the physiological optimum temperature of leaf-level photosynthetic capacity, which typically exceeds 30 °C. The global average \(T_{\mathrm{opt}}^{\mathrm{eco}}\) is estimated to be 23 ± 6 °C, with warmer regions having higher \(T_{\mathrm{opt}}^{\mathrm{eco}}\) values than colder regions. In tropical forests in particular, \(T_{\mathrm{opt}}^{\mathrm{eco}}\) is close to growing-season air temperature and is projected to fall below it under all scenarios of future climate, suggesting a limited safe operating space for these ecosystems under future warming.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

All data are available in the main text or the supplementary information. All computer codes used in this study can be provided by the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Berry, J. & Bjorkman, O. Photosynthetic response and adaptation to temperature in higher plants. Ann. Rev. Plant Physio. 31, 491–543 (1980).

  2. 2.

    Hughes, L. Biological consequences of global warming: is the signal already apparent? Trends Ecol. Evol. 15, 56–61 (2000).

  3. 3.

    Niu, S. et al. Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China. Environ. Exp. Bot. 63, 91–101 (2008).

  4. 4.

    Way, D. A. & Yamori, W. Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynth. Res. 119, 89–100 (2014).

  5. 5.

    Kattge, J. & Knorr, W. Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant Cell Environ. 30, 1176–1190 (2007).

  6. 6.

    Lloyd, J. & Farquhar, G. D. Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philos. T. Roy. Soc. B 363, 1811–1817 (2008).

  7. 7.

    Medlyn, B. et al. Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ. 25, 1167–1179 (2002).

  8. 8.

    Field, C. B., Randerson, J. T. & Malmström, C. M. Global net primary production: combining ecology and remote sensing. Remote Sens. Environ. 51, 74–88 (1995).

  9. 9.

    Niinemets, Ü. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82, 453–469 (2001).

  10. 10.

    Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 292–297 (2013).

  11. 11.

    Tyree, M. T. & Dixon, M. A. Water stress induced cavitation and embolism in some woody plants. Physiol. Plantarum 66, 397–405 (1986).

  12. 12.

    Yin, X. & Struik, P. C3 and C4 photosynthesis models: an overview from the perspective of crop modelling. NJAS-Wagen. J. Life Sc. 57, 27–38 (2009).

  13. 13.

    Smith, N. G., Malyshev, S. L., Shevliakova, E., Kattge, J. & Dukes, J. S. Foliar temperature acclimation reduces simulated carbon sensitivity to climate. Nat. Clim. Change 6, 407–411 (2016).

  14. 14.

    Mercado, L. M. et al. Large sensitivity in land carbon storage due to geographical and temporal variation in the thermal response of photosynthetic capacity. New Phytol. 218, 1462–1477 (2018).

  15. 15.

    Corlett, R. T. Impacts of warming on tropical lowland rainforests. Trends Ecol. Evol. 26, 606–613 (2011).

  16. 16.

    Doughty, C. E. & Goulden, M. L. Are tropical forests near a high temperature threshold? J. Geophys. Res. Biogeo. 113, G00B07 (2008).

  17. 17.

    Baldocchi, D. et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. B. Am. Meteorol. Soc. 82, 2415–2434 (2001).

  18. 18.

    Niu et al. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytol. 194, 775–783 (2012).

  19. 19.

    Badgley, G., Field, C. B. & Berry, J. A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 3, e1602244 (2017).

  20. 20.

    Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).

  21. 21.

    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).

  22. 22.

    Joiner, J., Yoshida, Y., Vasilkov, A. & Middleton, E. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 8, 637–651 (2011).

  23. 23.

    Ma, S. et al. Photosynthetic responses to temperature across leaf-canopy-ecosystem scales: a 15-year study in a Californian oak-grass savanna. Photosynth. Res. 132, 277–291 (2017).

  24. 24.

    Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. New Phytol. 218, 1430–1449 (2018).

  25. 25.

    Bunce, J. A. Acclimation of photosynthesis to temperature in eight cool and warm climate herbaceous C3 species: temperature dependence of parameters of a biochemical photosynthesis model. Photosynth. Res. 63, 59–67 (2000).

  26. 26.

    Han, Q., Kawasaki, T., Nakano, T. & Chiba, Y. Spatial and seasonal variability of temperature responses of biochemical photosynthesis parameters and leaf nitrogen content within a Pinus densiflora crown. Tree Physiol. 24, 737–744 (2004).

  27. 27.

    Harley, P., Thomas, R., Reynolds, J. & Strain, B. Modelling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ. 15, 271–282 (1992).

  28. 28.

    Onoda, Y., Hikosaka, K. & Hirose, T. The balance between RuBP carboxylation and RuBP regeneration: a mechanism underlying the interspecific variation in acclimation of photosynthesis to seasonal change in temperature. Funct. Plant Biol. 32, 903–910 (2005).

  29. 29.

    Walcroft, A., Le Roux, X., Diaz-Espejo, A., Dones, N. & Sinoquet, H. Effects of crown development on leaf irradiance, leaf morphology and photosynthetic capacity in a peach tree. Tree Physiol. 22, 929–938 (2002).

  30. 30.

    Wang, K. Y., Kellomäki, S. & Laitinen, K. Acclimation of photosynthetic parameters in Scots pine after three years exposure to elevated temperature and CO2. Agr. Forest Meteorol. 82, 195–217 (1996).

  31. 31.

    Vaz, M. et al. Drought-induced photosynthetic inhibition and autumn recovery in two Mediterranean oak species (Quercus ilex and Quercus suber). Tree Physiol. 30, 946–956 (2010).

  32. 32.

    Zhou, L. et al. Responses of photosynthetic parameters to drought in subtropical forest ecosystem of China. Sci. Rep. 5, 18254 (2015).

  33. 33.

    Doughty, C. E. & Goulden, M. L. Seasonal patterns of tropical forest leaf area index and CO2 exchange. J. Geophys. Res. Biogeo. 113, G00B06 (2008).

  34. 34.

    Wu, J. et al. Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales. Glob. Change Biol. 23, 1240–1257 (2017).

  35. 35.

    Gunderson, C. A., O’Hara, K. H., Campion, C. M., Walker, A. V. & Edwards, N. T. Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate. Glob. Change Biol. 16, 2272–2286 (2010).

  36. 36.

    Mooney, H. A., Björkman, O. & Collatz, G. J. Photosynthetic acclimation to temperature in the desert shrub, Larrea divaricata I. Carbon dioxide exchange characteristics of intact leaves. Plant Physiol. 61, 406–410 (1978).

  37. 37.

    Yuan, W. et al. Thermal adaptation of net ecosystem exchange. Biogeosciences 8, 1453–1463 (2011).

  38. 38.

    Sage, R. F. & Kubien, D. S. The temperature response of C3 and C4 photosynthesis. Plant Cell Environ. 30, 1086–1106 (2007).

  39. 39.

    Armond, P. A., Schreiber, U. & Björkman, O. Photosynthetic acclimation to temperature in the desert shrub, Larrea divaricata: II. Light-harvesting efficiency and electron transport. Plant Physiol. 61, 411–415 (1978).

  40. 40.

    Badger, M., Björkman, O. & Armond, P. An analysis of photosynthetic response and adaptation to temperature in higher plants: temperature acclimation in the desert evergreen Nerium oleander L. Plant Cell Environ. 5, 85–99 (1982).

  41. 41.

    Atkin, O., Scheurwater, I. & Pons, T. High thermal acclimation potential of both photosynthesis and respiration in two lowland Plantago species in contrast to an alpine congeneric. Glob. Change Biol. 12, 500–515 (2006).

  42. 42.

    Doughty, C. E. An in situ leaf and branch warming experiment in the Amazon. Biotropica 43, 658–665 (2011).

  43. 43.

    Koch, G. W., Amthor, J. S. & Goulden, M. L. Diurnal patterns of leaf photosynthesis, conductance and water potential at the top of a lowland rain forest canopy in Cameroon: measurements from the Radeau des Cimes. Tree Physiol. 14, 347–360 (1994).

  44. 44.

    Tribuzy, E. S. Variações da temperatura foliar do dossel eo seu efeito na taxa assimilatória de CO2 na Amazônia Central. PhD thesis, Univ. de São Paulo (2005).

  45. 45.

    White, A., Cannell, M. G. & Friend, A. D. CO2 stabilization, climate change and the terrestrial carbon sink. Glob. Change Biol. 6, 817–833 (2000).

  46. 46.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  47. 47.

    Xu, L. et al. Temperature and vegetation seasonality diminishment over northern lands. Nat. Clim. Change 3, 581 (2013).

  48. 48.

    Sendall, K. M. et al. Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming. Glob. Change Biol. 21, 1342–1357 (2015).

  49. 49.

    Likens, G. E. Long-Term Studies in Ecology (Springer, New York, 1989).

  50. 50.

    Jung, M. et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeo. 116, G00J07 (2011).

  51. 51.

    Lester, R. E., Close, P. G., Barton, J. L., Pope, A. J. & Brown, S. C. Predicting the likely response of data-poor ecosystems to climate change using space-for-time substitution across domains. Glob. Change Biol. 20, 3471–3481 (2014).

  52. 52.

    Cavaleri, M. A., Reed, S. C., Smith, W. K. & Wood, T. E. Urgent need for warming experiments in tropical forests. Glob. Change Biol. 21, 2111–2121 (2015).

  53. 53.

    Papale, D. et al. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3, 571–583 (2006).

  54. 54.

    Myneni, R. B., Ramakrishna, R., Nemani, R. & Running, S. W. Estimation of global leaf area index and absorbed PAR using radiative transfer models. IEEE Trans. Geosci. Remote Sens. 35, 1380–1393 (1997).

  55. 55.

    Maisongrande, P., Duchemin, B. & Dedieu, G. VEGETATION/SPOT: an operational mission for the Earth monitoring; presentation of new standard products. Int. J. Remote Sens. 25, 9–14 (2004).

  56. 56.

    Vermote, E. F., El Saleous, N. Z. & Justice, C. O. Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sens. Environ. 83, 97–111 (2002).

  57. 57.

    Rahman, A. F., Sims, D. A., Cordova, V. D. & El‐Masri, B. Z. Potential of MODIS EVI and surface temperature for directly estimating per-pixel ecosystem C fluxes. Geophys. Res. Lett. 32, 156–171 (2005).

  58. 58.

    Frankenberg, C. et al. New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38, 351–365 (2011).

  59. 59.

    Lee, J. E. et al. Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence. Proc. Roy. Soc. B 280, 176–188 (2013).

  60. 60.

    Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Köppen–Geiger climate classification updated. Meteorologische Z. 15, 259–263 (2006).

  61. 61.

    Qin, J., Yang, K., Liang, S. & Guo, X. The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change 97, 321–327 (2009).

  62. 62.

    Liu, D. et al. Contrasting responses of grassland water and carbon exchanges to climate change between Tibetan Plateau and Inner Mongolia. Agr. Forest Meteorol. 249, 163–175 (2018).

  63. 63.

    Wan, Z. & Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 34, 892–905 (1996).

  64. 64.

    Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 701–795 (2016).

  65. 65.

    Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).

  66. 66.

    Jones, P. W. First-and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Weather Rev. 127, 2204–2210 (1999).

  67. 67.

    Battaglia, M., Beadle, C. & Loughhead, S. Photosynthetic temperature responses of Eucalyptus globulus and Eucalyptus nitens. Tree Physiol. 16, 81–89 (1996).

  68. 68.

    Lin, Y. S., Medlyn, B. E. & Ellsworth, D. S. Temperature responses of leaf net photosynthesis: the role of component processes. Tree Physiol. 32, 219–231 (2012).

  69. 69.

    Farquhar, Gv, von Caemmerer, Sv & Berry, J. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

  70. 70.

    Baker, N. R. Photosynthesis and the Environment (Kluwer Academic Publishers, 2006).

  71. 71.

    Helliker, B. R. & Richter, S. L. Subtropical to boreal convergence of tree-leaf temperatures. Nature 454, 511 (2008).

  72. 72.

    Michaletz, S. T. et al. The energetic and carbon economic origins of leaf thermoregulation. Nat. Plants 2, 16129 (2016).

  73. 73.

    Lian, X. et al. Spatiotemporal variations in the difference between satellite-observed daily maximum land surface temperature and station‐based daily maximum near-surface air temperature. J. Geophys. Res. Atmos. 122, 2254–2268 (2017).

Download references

Acknowledgements

This study was supported by the Strategic Priority Research Program (A) of the Chinese Academy of Sciences (Grant No. XDA20050101), the National Natural Science Foundation of China (41530528) and the National Key R&D Program of China (2017YFA0604702). This work used eddy covariance data acquired by the FLUXNET community and in particular by the following networks: AmeriFlux (US Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program (DE-FG02-04ER63917 and DE-FG02-04ER63911)), AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada (supported by CFCAS, NSERC, BIOCAP, Environment Canada and NRCan), GreenGrass, KoFlux, LBA, NECC, OzFlux, TCOS-Siberia and USCCC. We acknowledge the financial support to the eddy covariance data harmonization provided by CarboEuropeIP, FAO-GTOS-CO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Université Laval and Environment Canada, and the US Department of Energy and the database development and technical support from Berkeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory, University of California-Berkeley and University of Virginia. P.C., J.P. and I.A.J. would like to acknowledge the financial support from the European Research Council Synergy Grant No. ERC-SyG-2013-610028 IMBALANCE-P. P.C. was also supported by the French Agence Nationale de la Recherche Convergence Lab Changement climatique et usage des terres (CLAND). I.A.J. acknowledges the Methusalem funding of the Flemish Community through the Research Council of the University of Antwerp. T.F.K. was supported by the NASA Terrestrial Ecology Program IDS Award NNH17AE86I. J.M. and X.S. are supported by the Terrestrial Ecosystem Science Scientific Focus Area project funded through the Terrestrial Ecosystem Science Program in the Climate and Environmental Sciences Division of the Biological and Environmental Research Program in the US Department of Energy Office of Science. Oak Ridge National Laboratory is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC05-00OR22725. M.C. was supported by a grant overseen by the French National Research Agency (ANR) as part of the Investissements d’Avenir program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE).

Author information

Affiliations

  1. Sino-French Institute for Earth System Science, Peking University, Beijing, China

    • Mengtian Huang
    • , Shilong Piao
    • , Xuhui Wang
    • , Shushi Peng
    • , Kai Wang
    • , Mengdi Gao
    • , Yue He
    •  & Yongwen Liu
  2. Key Laboratory of Alpine Ecology and Biodiversity, Chinese Academy of Sciences, Beijing, China

    • Shilong Piao
    •  & Tao Wang
  3. Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing, China

    • Shilong Piao
    •  & Tao Wang
  4. Laboratoire des Sciences du Climat et de l’Environnement, Gif-sur-Yvette, France

    • Philippe Ciais
  5. Centre for Research on Ecology and Forestry Applications, Barcelona, Spain

    • Josep Peñuelas
  6. CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain

    • Josep Peñuelas
  7. Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    • Trevor F. Keenan
  8. Department of Environmental Science Policy and Management, UC Berkeley, Berkeley, CA, USA

    • Trevor F. Keenan
  9. Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA

    • Joseph A. Berry
  10. Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

    • Jiafu Mao
    •  & Xiaoying Shi
  11. European Commission, Joint Research Centre (JRC), Ispra, Italy

    • Ramdane Alkama
    •  & Alessandro Cescatti
  12. Université de Lorraine, INRA, AgroParisTech, UMR Silva, Nancy, France

    • Matthias Cuntz
  13. CAVElab Computational and Applied Vegetation Ecology, Ghent University, Gent, Belgium

    • Hannes De Deurwaerder
    •  & Hans Verbeeck
  14. Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA

    • Yiqi Luo
  15. Department of Earth and Environment, Boston University, Boston, MA, USA

    • Ranga B. Myneni
  16. Key Laboratory of Ecosystem Network Observation and Modeling, Chinese Academy of Sciences, Beijing, China

    • Shuli Niu
  17. School of Atmospheric Sciences, Sun Yat-Sen University, Guangzhou, China

    • Wenping Yuan
  18. Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA

    • Jin Wu
  19. School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong

    • Jin Wu
  20. Centre of Excellence – Plants and Vegetation Ecology, University of Antwerp, Wilrijk, Belgium

    • Ivan A. Janssens

Authors

  1. Search for Mengtian Huang in:

  2. Search for Shilong Piao in:

  3. Search for Philippe Ciais in:

  4. Search for Josep Peñuelas in:

  5. Search for Xuhui Wang in:

  6. Search for Trevor F. Keenan in:

  7. Search for Shushi Peng in:

  8. Search for Joseph A. Berry in:

  9. Search for Kai Wang in:

  10. Search for Jiafu Mao in:

  11. Search for Ramdane Alkama in:

  12. Search for Alessandro Cescatti in:

  13. Search for Matthias Cuntz in:

  14. Search for Hannes De Deurwaerder in:

  15. Search for Mengdi Gao in:

  16. Search for Yue He in:

  17. Search for Yongwen Liu in:

  18. Search for Yiqi Luo in:

  19. Search for Ranga B. Myneni in:

  20. Search for Shuli Niu in:

  21. Search for Xiaoying Shi in:

  22. Search for Wenping Yuan in:

  23. Search for Hans Verbeeck in:

  24. Search for Tao Wang in:

  25. Search for Jin Wu in:

  26. Search for Ivan A. Janssens in:

Contributions

S. Piao designed the research. M. H. performed the analysis. S. Piao drafted the paper. All authors contributed to the interpretation of the results and the text.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Shilong Piao.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–22, Supplementary Tables 1 and 2 and Supplementary References

  2. Reporting Summary

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41559-019-0838-x

Further reading