Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Water quality mediates resilience on the Great Barrier Reef

Abstract

Threats from climate change and other human pressures have led to widespread concern for the future of Australia’s Great Barrier Reef (GBR). Resilience of GBR reefs will be determined by their ability to resist disturbances and to recover from coral loss, generating intense interest in management actions that can moderate these processes. Here we quantify the effect of environmental and human drivers on the resilience of southern and central GBR reefs over the past two decades. Using a composite water quality index, we find that while reefs exposed to poor water quality are more resistant to coral bleaching, they recover from disturbance more slowly and are more susceptible to outbreaks of crown-of-thorns starfish and coral disease—with a net negative impact on recovery and long-term hard coral cover. Given these conditions, we find that 6–17% improvement in water quality will be necessary to bring recovery rates in line with projected increases in coral bleaching among contemporary inshore and mid-shelf reefs. However, such reductions are unlikely to buffer projected bleaching effects among outer-shelf GBR reefs dominated by fast-growing, thermally sensitive corals, demonstrating practical limits to local management of the GBR against the effects of global warming.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study locations and trends in hard coral cover across the GBR.
Fig. 2: Bayesian posterior model results for hierarchical model of hard coral decline and recovery across the GBR.
Fig. 3: Projected effects of changes in the average frequency of river-influenced plumes across the GBR.

Similar content being viewed by others

Data availability

All code and data to reproduce the entire analysis are available on GitHub: https://github.com/mamacneil/GBR_Gompertz.

References

  1. Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    Article  CAS  Google Scholar 

  2. De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl Acad. Sci. USA 109, 17995–17999 (2012).

    Article  Google Scholar 

  3. Cheal, A. J., MacNeil, M. A., Emslie, M. J. & Sweatman, H. The threat to coral reefs from more intense cyclones under climate change. Glob. Change Biol. 23, 1511–1524 (2017).

    Article  Google Scholar 

  4. Maynard, J. et al. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nat. Clim. Change 5, 688–694 (2015).

    Article  Google Scholar 

  5. Frieler, K. et al. Limiting global warming to 2 C is unlikely to save most coral reefs. Nat. Clim. Change 3, 165–170 (2013).

    Article  Google Scholar 

  6. Logan, C. A., Dunne, J. P., Eakin, C. M. & Donner, S. D. Incorporating adaptive responses into future projections of coral bleaching. Glob. Change Biol. 20, 125–139 (2014).

    Article  Google Scholar 

  7. Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342 (2016).

    Article  CAS  Google Scholar 

  8. Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    Article  CAS  Google Scholar 

  9. Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an isolated coral reef system following severe disturbance. Science 340, 69–71 (2013).

    Article  CAS  Google Scholar 

  10. Bellwood, D. R., Hughes, T. P. & Hoey, A. S. Sleeping functional group drives coral-reef recovery. Curr. Biol. 16, 2434–2439 (2006).

    Article  CAS  Google Scholar 

  11. Done, T. J. Phase shifts in coral reef communities and their ecological significance. Hydrobiologia 247, 121–132 (1992).

    Article  Google Scholar 

  12. Johns, K. A., Osborne, K. O. & Logan, M. Contrasting rates of coral recovery and reassembly in coral communities on the Great Barrier Reef. Coral Reefs 33, 553–563 (2014).

    Article  Google Scholar 

  13. Fabricius, K., De’ath, G., McCook, L., Turak, E. & Williams, D. M. Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. Mar. Pollut. Bull. 51, 384–398 (2005).

    Article  CAS  Google Scholar 

  14. Uthicke, S., Thompson, A. & Schaffelke, B. Effectiveness of benthic foraminiferal and coral assemblages as water quality indicators on inshore reefs of the Great Barrier Reef, Australia. Coral Reefs 29, 209–225 (2010).

    Article  Google Scholar 

  15. Thompson, A., Schroeder, T., Brando, V. E. & Schaffelke, B. Coral community responses to declining water quality: Whitsunday Islands, Great Barrier Reef, Australia. Coral Reefs 33, 923–938 (2014).

    Article  Google Scholar 

  16. Ortiz, J.-C. et al. Impaired recovery of the great barrier reef under cumulative stress. Sci. Adv. 4, eaar6127 (2018).

    Article  Google Scholar 

  17. Ateweberhan, M., McClanahan, T. R., Graham, N. A. J. & Sheppard, C. R. C. Episodic heterogeneous decline and recovery of coral cover in the Indian Ocean. Coral Reefs 30, 739–752 (2011).

    Article  Google Scholar 

  18. Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    Article  CAS  Google Scholar 

  19. Hughes, T. P., Day, J. C. & Brodie, J. Securing the future of the Great Barrier Reef. Nat. Clim. Change 5, 508–511 (2015).

    Article  Google Scholar 

  20. Smith, J., Smith, C. & Hunter, C. An experimental analysis of the effects of herbivory and nutrient enrichment on benthic community dynamics on a Hawaiian reef. Coral Reefs 19, 332–342 (2001).

    Article  Google Scholar 

  21. Fabricius, K. E., Okaji, K. & De’ath, G. Three lines of evidence to link outbreaks of the crown-of-thorns seastar Acanthaster planci to the release of larval food limitation. Coral Reefs 29, 593–605 (2010).

    Article  Google Scholar 

  22. Willis, B. L., Page, C. A. & Dinsdale, E. A. Coral disease on the great barrier reef. in Coral Health and Disease (eds Rosenberg, E. & Loya, Y.) 69–104 (Springer, Berlin, 2004).

  23. Ferrier-Pagès, C., Gattuso, J.-P., Dallot, S. & Jaubert, J. Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19, 103–113 (2000).

    Article  Google Scholar 

  24. Houk, P., Musburger, C. & Wiles, P. Water quality and herbivory interactively drive coral-reef recovery patterns in American Samoa. PLoS ONE 5, e13913 (2010).

    Article  Google Scholar 

  25. Brodie, J. E. et al. Setting ecologically relevant targets for river pollutant loads to meet marine water quality requirements for the Great Barrier Reef, Australia: a preliminary methodology and analysis. Ocean Coast. Manag. 143, 136–147 (2017).

    Article  Google Scholar 

  26. Fukaya, K., Okuda, T., Nakaoka, M., Hori, M. & Noda, T. Seasonality in the strength and spatial scale of processes determining intertidal barnacle population growth. J. Anim. Ecol. 79, 1270–1279 (2010).

    Article  Google Scholar 

  27. Nyström, M., Graham, N. A. J., Lokrantz, J. & Norström, A. V. Capturing the cornerstones of coral reef resilience: linking theory to practice. Coral Reefs 27, 795–809 (2008).

    Article  Google Scholar 

  28. Sweatman, H., Delean, S. & Syms, C. Assessing loss of coral cover on Australia’s Great Barrier Reef over two decades, with implications for longer-term trends. Coral Reefs 30, 521–531 (2011).

    Article  Google Scholar 

  29. Pratchett, M. S., Caballes, C. F., Rivera-Posada, J. A. & Sweatman, H. P. A. Limits to understanding and managing outbreaks of crown-of-thorns starfish (Acanthaster spp.). Oceanogr. Mar. Biol. Annu. Rev. 52, 133–200 (2014).

    Google Scholar 

  30. Emslie, M. J., Cheal, A. J., Sweatman, H. P. A. & Delean, S. Recovery form disturbance of coral reef fish communities on the Great Barrier Reef, Australia. Mar. Ecol. Ser. 371, 177–190 (2008).

    Article  Google Scholar 

  31. Emslie, M. J., Pratchett, M. S., Cheal, A. J. & Osborne, K. Great Barrier Reef butterflyfish community structure: the role of shelf position and benthic community type. Coral Reefs 29, 705–715 (2010).

    Article  Google Scholar 

  32. Great Barrier Reef Marine Park Zoning Plan 2003 1–211 (Great Barrier Reef Marine Park Authority, 2004).

  33. Petus, C., da Silva, E. T., Devlin, M., Wenger, A. S. & Álvarez-Romero, J. G. Using MODIS data for mapping of water types within river plumes inthe Great Barrier Reef, Australia: towards the production of river plume risk maps for reef and seagrass ecosystems. J. Environ. Manage. 137, 163–177 (2014).

    Article  CAS  Google Scholar 

  34. Brodie, J., Devlin, M. & Lewis, S. Potential enhanced survivorship of crown of thorns starfish larvae due to near-annual nutrient enrichment during secondary outbreaks on the central mid-shelf of the Great Barrier Reef, Australia. Diversity 9, 17 (2017).

    Article  Google Scholar 

  35. Vega Thurber, R. L. et al. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob. Change Biol. 20, 544–554 (2014).

    Article  Google Scholar 

  36. van Woesik, R., Cacciapaglia, C. & Randall, C. J. Thermal-stress response of coral communities to climate change. in The Cnidaria, Past, Present and Future: The World of Medusa and Her Sisters (eds Goffredo, S. & Dubinsky, Z.) 545–552 (Springer, Berlin, 2016).

  37. Clark, T. R. et al. U-Th dating reveals regional-scale decline of branching Acropora corals on the Great Barrier Reef over the past century. Proc. Natl Acad. Sci. USA 114, 10350–10355 (2017).

    Article  CAS  Google Scholar 

  38. Mongin, M. et al. The exposure of the Great Barrier Reef to ocean acidification. Nat. Commun. 7, 10732 (2016).

    Article  CAS  Google Scholar 

  39. Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1671 (2018).

    Article  Google Scholar 

  40. Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 160–164 (2013).

    Article  CAS  Google Scholar 

  41. Wooldridge, S. A. & Brodie, J. E. Environmental triggers for primary outbreaks of crown-of-thorns starfish on the Great Barrier Reef, Australia. Mar. Pollut. Bull. 101, 805–815 (2015).

    Article  CAS  Google Scholar 

  42. Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492 (2018).

    Article  CAS  Google Scholar 

  43. Connell, J. H., Hughes, T. P. & Wallace, C. C. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol. Monogr. 67, 461–488 (1997).

    Article  Google Scholar 

  44. Kayanne, H., Harii, S., Ide, Y. & Akimoto, F. Recovery of coral populations after the 1998 bleaching on Shiraho Reef, in the southern Ryukyus, NW Pacific. Mar. Ecol. Prog. Ser. 239, 93–103 (2002).

    Article  Google Scholar 

  45. MacNeil, M. A. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015).

    Article  CAS  Google Scholar 

  46. Brodie, J. et al. Development of Basin-Specific Ecologically Relevant Water Quality Targets for the Great Barrier Reef (TropWATER, 2017). https://doi.org/10.13140/RG.2.2.36754.35526.

  47. Anthony, K. R. N. & Fabricius, K. E. Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J. Exp. Mar. Bio. Ecol. 252, 221–253 (2000).

    Article  CAS  Google Scholar 

  48. Petus, C. et al. Estimating the exposure of coral reefs and seagrass meadows to land-sourced contaminants in river flood plumes of the great barrier reef: Validating a simple satellite risk framework with environmental data. Remote Sens. 8, 1–30 (2016).

    Article  Google Scholar 

  49. Fabricius, K. E., Logan, M. M., Weeks, S. J., Lewis, S. E. & Brodie, J. Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002–2013. Esturar. Coast. Shelf Sci. 173, A1–A15 (2016).

    Article  Google Scholar 

  50. Bessell-Browne, P. et al. Impacts of turbidity on corals: the relative importance of light limitation and suspended sediments. Mar. Pollut. Bull. 117, 161–170 (2017).

    Article  CAS  Google Scholar 

  51. Birrell, C. L., McCook, L. J. & Willis, B. L. Effects of algal turfs and sediment on coral settlement. Mar. Pollut. Bul. 51, 408–414 (2005).

    Article  CAS  Google Scholar 

  52. IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, Cambridge, 2014).

  53. Van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci. Rep. 6, 39666 (2016).

    Article  Google Scholar 

  54. Draft Reef 2050 Water Quality Improvement Plan 2017–2022 for Public Consultation (The State of Queensland, 2017).

  55. Waterhouse, J. et al. Scientific Consensus Statement 2017: A Synthesis of the Science of Land-based Water Quality Impacts on the Great Barrier Reef (State of Queensland, 2017).

  56. van Oppen, M. J. H. et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Change Biol. 23, 3437–3448 (2017).

    Article  Google Scholar 

  57. Mellin, C., Aaron MacNeil, M., Cheal, A. J., Emslie, M. J. & Julian Caley, M. Marine protected areas increase resilience among coral reef communities. Ecol. Lett. 19, 629–637 (2016).

    Article  Google Scholar 

  58. Norström, A. V. et al. Guiding coral reef futures in the Anthropocene. Front. Ecol. Environ. 14, 490–498 (2016).

    Article  Google Scholar 

  59. Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).

    Article  Google Scholar 

  60. Wolff, N. H., Mumby, P. J., Devlin, M. & Anthony, K. R. N. Vulnerability of the Great Barrier Reef to climate change and local pressures. Glob. Change Biol. 23, 3437–3448 (2018).

    Google Scholar 

  61. Anthony, K. et al. New interventions are needed to save coral reefs. Nat. Ecol. Evol. 1, 1420 (2017).

    Article  Google Scholar 

  62. Sweatman, H. P. A. et al. Long-term Monitoring of the Great Barrier Reef, Status Report 8 (Australian Institute of Marine Science, Townsville, Australia, 2008).

  63. Matthews, S. A. et al. High-resolution characterization of the abiotic environment and disturbance regimes on the Great Barrier Reef, 1985–2017. Ecology 100, e02574 (2019).

    Article  Google Scholar 

  64. Walker, B., Holling, C. S., Carpenter, S. R. & Kinzig, A. Resilience, adaptability and transformability in social–ecological systems. Ecol. Soc. 9, 5 (2004).

    Article  Google Scholar 

  65. Osborne, K., Dolman, A. M., Burgess, S. C. & Johns, K. A. Disturbance and the dynamics of coral cover on the Great Barrier Reef (1995–2009). PLoS ONE 6, e17516 (2011).

    Article  CAS  Google Scholar 

  66. Bass, D. K. & Miller, I. R. Crown-of-Thorns Starfish and Coral Surveys Using the Manta Tow and Scuba Search Techniques (Australian Institute of Marine Science, Townsville, Australia, 1996).

  67. Puotinen, M., Maynard, J. A., Beeden, R., Radford, B. & Williams, G. J. A robust operational model for predicting where tropical cyclone waves damage coral reefs. Sci. Rep. 6, 1–12 (2016).

    Article  Google Scholar 

  68. Stockwell, B., Jadloc, C. R. L., Abesamis, R. A., Alcala, A. C. & Russ, G. R. Trophic and benthic responses to no-take marine reserve protection in the Philippines. Mar. Ecol. Prog. Ser. 389, 1–15 (2009).

    Article  Google Scholar 

  69. Cheal, A. J. et al. Coral--macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs 29, 1005–1015 (2010).

    Article  Google Scholar 

  70. McCook, L. J. et al. Adaptive management of the Great Barrier Reef: a globally significant demonstration of the benefits of networks of marine reserves. Proc. Natl Acad. Sci. USA 107, 18278–18285 (2010).

    Article  CAS  Google Scholar 

  71. Baith, K., Lindsay, R., Fu, G. & McClain, C. R. SeaDAS, a data analysis system for ocean-color satellite sensors. Eos, Trans. Am. Geophys. Union 82, 202–202 (2001).

    Article  Google Scholar 

  72. Alvarez-Romero, J. G. et al. A novel approach to model exposure of coastal-marine ecosystems to riverine flood plumes based on remote sensing techniques. J. Environ. Manage. 119, 194–207 (2013).

    Article  CAS  Google Scholar 

  73. Devlin, M. J. et al. Mapping the pollutants in surface riverine flood plume waters in the Great Barrier Reef, Australia. Mar. Pollut. Bull. 65, 224–235 (2012).

    Article  CAS  Google Scholar 

  74. Devlin, M. & Schaffelke, B. Spatial extent of riverine flood plumes and exposure of marine ecosystems in the Tully coastal region, Great Barrier Reef. Mar. Freshw. Res. 60, 1109–1122 (2009).

    Article  CAS  Google Scholar 

  75. Osborne, K. et al. Delayed coral recovery in a warming ocean. Glob. Change Biol. 23, 3869–3881 (2017).

    Article  Google Scholar 

  76. Salvatier, J., Wiecki, T. V. & Fonnesbeck, C. Probabilistic programming in Python using PyMC3. Peer J. Comput. Sci. 2, e55 (2016).

    Article  Google Scholar 

  77. Brooks, S. P., Catchpole, E. A. & Morgan, B. J. T. Bayesian animal survival estimation. Stat. Sci. 15, 357–376 (2000).

    Article  Google Scholar 

  78. McCulloch, M. et al. Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature 421, 727–730 (2003).

    Article  CAS  Google Scholar 

  79. Csaszar, N. B. M., Ralph, P. J., Frankham, R., Berkelmans, R. & van Oppen, M. J. H. Estimating the potential for adaptation of corals to climate warming. PLoS ONE 5, e9751 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a Natural Sciences and Engineering Research Council (Canada) Research Chair awarded to A. MacNeil, Australian Research Council Discovery Early Career Researcher awards to C, Mellin (No. DE140100701) and C. Drovandi (No. DE160100741) and a Royal Society University Research Fellowship awarded to N. Graham (No. UF140691). We thank the exceptional staff at the Australian Institute of Marine Science for their support and critical discussions of the work. Data and coding used in this paper are available through the GitHub links in Methods. We thank S. Purkis for providing a draft manuscript on remote sensing. We also especially thank R. van Hooidonk at NOAA for graciously and quickly providing GBR-specific degree heating month predictions.

Author information

Authors and Affiliations

Authors

Contributions

M.A.M. conceived of the study with N.A.J.G. M.A.M., C.M., N.H.W., M.D. and S.M. collected or collated the data. M.A.M., C.M., C.D. and K.M. developed and implemented the analyses with ideas from T.R.M., S.M. and N.H.W. M.A.M., C.M. and N.A.J.G. wrote the paper, and all authors contributed considerably to the interpretation and editing of the manuscript.

Corresponding author

Correspondence to M. Aaron MacNeil.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacNeil, M.A., Mellin, C., Matthews, S. et al. Water quality mediates resilience on the Great Barrier Reef. Nat Ecol Evol 3, 620–627 (2019). https://doi.org/10.1038/s41559-019-0832-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-019-0832-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing