Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The evolutionary ecology of circadian rhythms in infection

Abstract

Biological rhythms coordinate organisms’ activities with daily rhythms in the environment. For parasites, this includes rhythms in both the external abiotic environment and the within-host biotic environment. Hosts exhibit rhythms in behaviours and physiologies, including immune responses, and parasites exhibit rhythms in traits underpinning virulence and transmission. Yet, the evolutionary and ecological drivers of rhythms in traits underpinning host defence and parasite offence are largely unknown. Here, we explore how hosts use rhythms to defend against infection, why parasites have rhythms and whether parasites can manipulate host clocks to their own ends. Harnessing host rhythms or disrupting parasite rhythms could be exploited for clinical benefit; we propose an interdisciplinary effort to drive this emerging field forward.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. de Mairan, J. Observation botanique. Hist. l’Academie R. des Sci. Paris (1729).

  2. Sharma, V. K. Adaptive significance of circadian clocks. Chronobiol. Int. 20, 901–919 (2003).

    PubMed  Google Scholar 

  3. Green, R. M., Tingay, S., Wang, Z.-Y. & Tobin, E. M. Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol. 129, 576–584 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Helm, B. et al. Two sides of a coin: ecological and chronobiological perspectives of timing in the wild. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160246 (2017).

    Google Scholar 

  5. Scheiermann, C., Gibbs, J., Ince, L. & Loudon, A. Clocking in to immunity. Nat. Rev. Immunol. 18, 423–437 (2018).

    CAS  PubMed  Google Scholar 

  6. Martinez-Bakker, M. & Helm, B. The influence of biological rhythms on host–parasite interactions. Trends Ecol. Evol. 30, 314–326 (2015).

    PubMed  Google Scholar 

  7. Reece, S. E., Prior, K. F. & Mideo, N. The life and times of parasites: rhythms in strategies for within-host survival and between-host transmission. J. Biol. Rhythms 32, 516–533 (2017).

    PubMed  PubMed Central  Google Scholar 

  8. Rijo-Ferreira, F., Pinto-Neves, D., Barbosa-Morais, N. L., Takahashi, J. S. & Figueiredo, L. M. Trypanosoma brucei metabolism is under circadian control. Nat. Microbiol. 2, 17032 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. Scheiermann, C., Kunisaki, Y. & Frenette, P. S. Circadian control of the immune system. Nat. Rev. Immunol. 13, 190–198 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Curtis, A. M., Bellet, M. M., Sassone-Corsi, P. & O’Neill, L. A. J. Circadian clock proteins and immunity. Immunity 40, 178–186 (2014).

    CAS  PubMed  Google Scholar 

  11. Zasłona, Z. et al. The circadian protein BMAL1 in myeloid cells is a negative regulator of allergic asthma. Am. J. Physiol. Lung Cell Mol. Physiol. 312, L855–L860 (2017).

    PubMed  Google Scholar 

  12. Keller, M. et al. A circadian clock in macrophages controls inflammatory immune responses. Proc. Natl Acad. Sci. 106, 21407–21412 (2009).

    CAS  PubMed  Google Scholar 

  13. Nguyen, K. D. et al. Circadian gene Bmal1 regulates diurnal oscillations of Ly6Chi inflammatory monocytes. Science 341, 1483–1488 (2013).

    CAS  PubMed  Google Scholar 

  14. Haus, E. & Smolensky, M. H. Biologic rhythms in the immune system. Chronobiol. Int. 16, 581–622 (1999).

    CAS  PubMed  Google Scholar 

  15. Haus, E., Lakatua, D. J., Swoyer, J. & Sackett-Lundeen, L. Chronobiology in hematology and immunology. Am. J. Anat. 168, 467–517 (1983).

    CAS  PubMed  Google Scholar 

  16. Labrecque, N. & Cermakian, N. Circadian clocks in the immune system. J. Biol. Rhythms 30, 277–290 (2015).

    CAS  PubMed  Google Scholar 

  17. Graham, A. L., Allen, J. E. & Read, A. F. Evolutionary causes and consequences of immunopathology. Annu. Rev. Ecol. Evol. Syst. 36, 373–397 (2005).

    Google Scholar 

  18. Kerr, A. M., Gershman, S. N. & Sakaluk, S. K. Experimentally induced spermatophore production and immune responses reveal a trade-off in crickets. Behav. Ecol. 21, 647–654 (2010).

    Google Scholar 

  19. Roden, L. C. & Ingle, R. A. Lights, rhythms, infection: the role of light and the circadian clock in determining the outcome of plant–pathogen interactions. Plant Cell 21, 2546–2552 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bhardwaj, V., Meier, S., Petersen, L. N., Ingle, R. A. & Roden, L. C. Defence responses of Arabidopsis thaliana to infection by Pseudomonas syringae are regulated by the circadian clock. PLoS One 6, e26968 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ingle, R. A. et al. Jasmonate signalling drives time-of-day differences in susceptibility of Arabidopsis to the fungal pathogen Botrytis cinerea. Plant J. 84, 937–948 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bellet, M. M. et al. Circadian clock regulates the host response to Salmonella. Proc. Natl Acad. Sci. 110, 9897–9902 (2013).

    CAS  PubMed  Google Scholar 

  23. Kiessling, S. et al. The circadian clock in immune cells controls the magnitude of Leishmania parasite infection. Sci. Rep. 7, 10892 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. Zuk, M., Rotenberry, J. T. & Tinghitella, R. M. Silent night: adaptive disappearance of a sexual signal in a parasitized population of field crickets. Biol. Lett. 2, 521–524 (2006).

    PubMed  PubMed Central  Google Scholar 

  25. Levri, E. P. & Lively, C. M. The effects of size, reproductive condition, and parasitism on foraging behaviour in a freshwater snail, Potamopyrgus antipodarum. Anim. Behav. 51, 891–901 (1996).

    Google Scholar 

  26. Ponton, F. et al. Water-seeking behavior in worm-infected crickets and reversibility of parasitic manipulation. Behav. Ecol. 22, 392–400 (2011).

    PubMed  PubMed Central  Google Scholar 

  27. Hopwood, T. W. et al. The circadian regulator BMAL1 programmes responses to parasitic worm infection via a dendritic cell clock. Sci. Rep. 8, 3782 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. Johnson, C. H., Zhao, C., Xu, Y. & Mori, T. Timing the day: what makes bacterial clocks tick? Nat. Rev. Microbiol. 15, 232–242 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zuk, M., Simmons, L. & Cupp, L. Calling characteristics of parasitized and unparasitized populations of the field cricket Teleogryllus oceanicus. Behav. Ecol. Sociobiol. 33, 339–343 (1993).

    Google Scholar 

  30. Clark, I. A., Budd, A. C. & Alleva, L. M. Sickness behaviour pushed too far—the basis of the syndrome seen in severe protozoal, bacterial and viral diseases and post-trauma. Malar. J. 7, 208 (2008).

    PubMed  PubMed Central  Google Scholar 

  31. Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9, 46–56 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ghai, R. R., Fugère, V., Chapman, C. A., Goldberg, T. L. & Davies, T. J. Sickness behaviour associated with non-lethal infections in wild primates. Proc. Biol. Sci. 282, 20151436 (2015).

    PubMed Central  Google Scholar 

  33. Kluger, M. J. Phylogeny of fever. Fed. Proc. 38, 30–34 (1979).

    CAS  PubMed  Google Scholar 

  34. Evans, S. S., Repasky, E. A. & Fisher, D. T. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat. Rev. Immunol. 15, 335–349 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kluger, M. J., Ringler, D. H. & Anver, M. R. Fever and survival. Science 188, 166–168 (1975).

    CAS  PubMed  Google Scholar 

  36. Schulman, C. I. et al. The effect of antipyretic therapy upon outcomes in critically ill patients: a randomized, prospective study. Surg. Infect. (Larchmt.) 6, 369–375 (2005).

    Google Scholar 

  37. Earn, D. J. D., Andrews, P. W. & Bolker, B. M. Population-level effects of suppressing fever. Proc. Biol. Sci. 281, 20132570 (2014).

    PubMed  PubMed Central  Google Scholar 

  38. Levi, F. & Schibler, U. Circadian rhythms: mechanisms and therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 47, 593–628 (2007).

    CAS  PubMed  Google Scholar 

  39. Matthews, J. H., Marte, E. & Halberg, F. A circadian susceptibility–resistance cycle to fluothane in male B 1 mice. Can. Anaesth. Soc. J. 11, 280–290 (1964).

    CAS  PubMed  Google Scholar 

  40. Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).

    CAS  PubMed  Google Scholar 

  41. Hawking, F. The 24-hour periodicity of microfilariae: biological mechanisms responsible for its production and control. Proc. R. Soc. Lond. B Biol. Sci. 169, 59–76 (1967).

    Google Scholar 

  42. Mouahid, G. et al. A new chronotype of Schistosoma mansoni: adaptive significance. Trop. Med. Int. Health 17, 727–732 (2012).

    CAS  PubMed  Google Scholar 

  43. Martinaud, G., Billaudelle, M. & Moreau, J. Circadian variation in shedding of the oocysts of Isospora turdi (Apicomplexa) in blackbirds (Turdusmerula): an adaptative trait against desiccation and ultraviolet radiation. Int. J. Parasitol. 39, 735–739 (2009).

    CAS  PubMed  Google Scholar 

  44. Prior, K. F. et al. Timing of host feeding drives rhythms in parasite replication. PLoS Pathog. 14, e1006900 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. Hirako, I. C. et al. Daily rhythms of TNFα expression and food intake regulate synchrony of Plasmodium stages with the host circadian cycle. Cell Host Microbe 23, 796–808.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Reece, S. E. & Prior, K. F. Malaria makes the most of mealtimes. Cell Host Microbe 23, 695–697 (2018).

    CAS  PubMed  Google Scholar 

  47. Fenske, M. P., Nguyen, L. P., Horn, E. K., Riffell, J. A. & Imaizumi, T. Circadian clocks of both plants and pollinators influence flower seeking behavior of the pollinator hawkmoth Manduca sexta. Sci. Rep. 8, 2842 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent decades. Proc. Natl Acad. Sci. USA 115, 5211–5216 (2018).

    CAS  PubMed  Google Scholar 

  49. Hevia, M. A., Canessa, P., Müller-Esparza, H. & Larrondo, L. F. A circadian oscillator in the fungus Botrytis cinerea regulates virulence when infecting Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 112, 8744–8749 (2015).

    CAS  PubMed  Google Scholar 

  50. Rensing, L., Meyer-Grahle, U. & Ruoff, P. Biological timing and the clock metaphor: oscillatory and hourglass mechanisms. Chronobiol. Int. 18, 329–369 (2001).

    CAS  PubMed  Google Scholar 

  51. Mrosovsky, N. Masking: history, definitions, and measurement. Chronobiol. Int. 16, 415–429 (1999).

    CAS  PubMed  Google Scholar 

  52. Sougoufara, S. et al. Biting by Anopheles funestus in broad daylight after use of long-lasting insecticidal nets: a new challenge to malaria elimination. Malar. J. 13, 125 (2014).

    PubMed  PubMed Central  Google Scholar 

  53. Rund, S. S. C., O’Donnell, A. J., Gentile, J. E. & Reece, S. E. Daily rhythms in mosquitoes and their consequences for malaria transmission. Insects 7, 14 (2016).

    PubMed Central  Google Scholar 

  54. Schneider, P. et al. Adaptive periodicity in the infectivity of malaria gametocytes to mosquitoes. Proc. Biol. Sci. 285, 294942 (2018).

    Google Scholar 

  55. Pigeault, R., Caudron, Q., Nicot, A., Rivero, A. & Gandon, S. Timing malaria transmission with mosquito fluctuations. Evol. Lett. 2, 378–389 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. Thomas, F., Rigaud, T. & Brodeur, J. in Encyclopedia of Animal Behavior (eds. Breed, M. & Moore, J.) 661–669 (Elsevier, 2010).

  57. de Bekker, C., Merrow, M. & Hughes, D. P. From behavior to mechanisms: an integrative approach to the manipulation by a parasitic fungus (Ophiocordyceps unilateralis s.l.) of its host ants (Camponotus spp.). Integr. Comp. Biol. 54, 166–176 (2014).

    PubMed  Google Scholar 

  58. Ko, C. H. & Takahashi, J. S. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15, R271–R277 (2006).

    CAS  PubMed  Google Scholar 

  59. Rijo-Ferreira, F. et al. Sleeping sickness is a circadian disorder. Nat. Commun. 9, 62 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Edgar, R. S. et al. Cell autonomous regulation of herpes and influenza virus infection by the circadian clock. Proc. Natl Acad. Sci. USA 113, 10085–10090 (2016).

    CAS  PubMed  Google Scholar 

  61. Thomas, F. et al. Do hairworms (Nematomorpha) manipulate the water seeking behaviour of their terrestrial hosts? J. Evol. Biol. 15, 356–361 (2002).

    Google Scholar 

  62. Biron, D. G. et al. ‘Suicide’ of crickets harbouring hairworms: a proteomics investigation. Insect Mol. Biol. 15, 731–742 (2006).

    PubMed  Google Scholar 

  63. Hughes, M. E. et al. Guidelines for genome-scale analysis of biological rhythms. J. Biol. Rhythms 32, 380–393 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lively, C. M. Evidence from a New Zealand snail for the maintenance of sex by parasitism. Nature 328, 519 (1987).

    Google Scholar 

  65. Levri, E. P. Parasite-induced change in host behavior of a freshwater snail: parasitic manipulation or byproduct of infection? Behav. Ecol. 10, 234–241 (1999).

    Google Scholar 

  66. Hoover, K. et al. A gene for an extended phenotype. Science 333, 1401 (2011).

    CAS  PubMed  Google Scholar 

  67. Goulson, D. Wipfelkrankheit: modification of host behaviour during baculoviral infection. Oecologia 109, 219–228 (1997).

    CAS  PubMed  Google Scholar 

  68. de Bekker, C. et al. Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genomics 16, 620 (2015).

    PubMed  PubMed Central  Google Scholar 

  69. de Bekker, C., Will, I., Das, B. & Adams, R. M. M. The ants (Hymenoptera: Formicidae) and their parasites: effects of parasitic manipulations and host responses on ant behavioral ecology. Myrmecol. News 28, 1–24 (2018).

    Google Scholar 

  70. Herbison, R., Lagrue, C. & Poulin, R. The missing link in parasite manipulation of host behaviour. Parasit. Vectors 11, 222 (2018).

    PubMed  PubMed Central  Google Scholar 

  71. Spoelstra, K., Wikelski, M., Daan, S., Loudon, A. S. I. & Hau, M. Natural selection against a circadian clock gene mutation in mice. Proc. Natl Acad. Sci. USA 113, 686–691 (2016).

    CAS  PubMed  Google Scholar 

  72. Stone, E. F. et al. The circadian clock protein timeless regulates phagocytosis of bacteria in Drosophila. PLoS Pathog. 8, e1002445 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee, J.-E. & Edery, I. Circadian regulation in the ability of Drosophila to combat pathogenic infections. Curr. Biol. 18, 195–199 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. van der Vinne, V. et al. Cold and hunger induce diurnality in a nocturnal mammal. Proc. Natl Acad. Sci. USA 111, 15256–15260 (2014).

    PubMed  Google Scholar 

  75. Bloch, G. & Robinson, G. E. Chronobiology. Reversal of honeybee behavioural rhythms. Nature 410, 1048 (2001).

    CAS  PubMed  Google Scholar 

  76. Bulla, M. et al. Unexpected diversity in socially synchronized rhythms of shorebirds. Nature 540, 109–113 (2016).

    CAS  PubMed  Google Scholar 

  77. Gibbs, J. E. et al. The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc. Natl Acad. Sci. USA 109, 582–587 (2012).

    CAS  PubMed  Google Scholar 

  78. Marpegan, L. et al. Diurnal variation in endotoxin-induced mortality in mice: correlation with proinflammatory factors. Chronobiol. Int. 26, 1430–1442 (2009).

    CAS  PubMed  Google Scholar 

  79. Gibbs, J. et al. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat. Med. 20, 919–926 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Druzd, D. et al. Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses. Immunity 46, 120–132 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Gagnidze, K. et al. Nuclear receptor REV-ERBα mediates circadian sensitivity to mortality in murine vesicular stomatitis virus-induced encephalitis. Proc. Natl Acad. Sci. USA 113, 5730–5735 (2016).

    CAS  PubMed  Google Scholar 

  82. Kuo, T.-H., Pike, D. H., Beizaeipour, Z. & Williams, J. A. Sleep triggered by an immune response in Drosophila is regulated by the circadian clock and requires the NFκβ relish. BMC Neurosci. 11, 17 (2010).

    PubMed  PubMed Central  Google Scholar 

  83. Murdock, C. C., Moller-Jacobs, L. L. & Thomas, M. B. Complex environmental drivers of immunity and resistance in malaria mosquitoes. Proc. Biol. Sci. 280, 20132030 (2013).

    PubMed  PubMed Central  Google Scholar 

  84. Griebel, T. & Zeier, J. Light regulation and daytime dependency of inducible plant defenses in Arabidopsis: phytochrome signaling controls systemic acquired resistance rather than local defense. Plant Physiol. 147, 790–801 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Korneli, C., Danisman, S. & Staiger, D. Differential control of pre-invasive and post-invasive antibacterial defense by the Arabidopsis circadian clock. Plant Cell Physiol. 55, 1613–1622 (2014).

    CAS  PubMed  Google Scholar 

  86. Wang, W. et al. Timing of plant immune responses by a central circadian regulator. Nature 470, 110–114 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Du, L. Y. et al. The innate immune cell response to bacterial infection in larval zebrafish is light-regulated. Sci. Rep. 7, 12657 (2017).

    PubMed  PubMed Central  Google Scholar 

  88. Lazado, C. C., Skov, P. V. & Pedersen, P. B. Innate immune defenses exhibit circadian rhythmicity and differential temporal sensitivity to a bacterial endotoxin in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 55, 613–622 (2016).

    CAS  PubMed  Google Scholar 

  89. Prendergast, B. J. et al. Circadian disruption alters the effects of lipopolysaccharide treatment on circadian and ultradian locomotor activity and body temperature rhythms of female Siberian hamsters. J. Biol. Rhythms 30, 543–556 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Johnson, C. H., Elliott, J., Foster, R., Honma, K. & Kronauer, R. Chronobiology: Biological Timekeeping (Sinauer Associates, 2004).

  91. Michael, T. P. et al. Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302, 1049–1053 (2003).

    CAS  PubMed  Google Scholar 

  92. Dodd, A. N. et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309, 630–633 (2005).

    CAS  PubMed  Google Scholar 

  93. Stephan, F. K. The “other” circadian system: food as a zeitgeber. J. Biol. Rhythms 17, 284–292 (2002).

    PubMed  Google Scholar 

  94. Young, M. W. & Kay, S. A. Time zones: a comparative genetics of circadian clocks. Nat. Rev. Genet. 2, 702–715 (2001).

    CAS  PubMed  Google Scholar 

  95. Dunlap, J. C. Molecular bases for circadian clocks. Cell 96, 271–290 (1999).

    CAS  PubMed  Google Scholar 

  96. Chen, Z., Odstrcil, E. A., Tu, B. P. & McKnight, S. L. Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity. Science 316, 1916–1919 (2007).

    CAS  PubMed  Google Scholar 

  97. Ouyang, Y., Andersson, C. R., Kondo, T., Golden, S. S. & Johnson, C. H. Resonating circadian clocks enhance fitness in cyanobacteria. Proc. Natl Acad. Sci. USA 95, 8660–8664 (1998).

    CAS  PubMed  Google Scholar 

  98. Nelson, B. V. & Vance, R. R. Diel foraging patterns of the sea urchin Centrostephanus coronatus as a predator avoidance strategy. Mar. Biol. 51, 251–258 (1979).

    Google Scholar 

  99. Hughes, D. P. et al. Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection. BMC Ecol. 11, 13 (2011).

    PubMed  PubMed Central  Google Scholar 

  100. de Bekker, C., Ohm, R. A., Evans, H. C., Brachmann, A. & Hughes, D. P. Ant-infecting Ophiocordyceps genomes reveal a high diversity of potential behavioral manipulation genes and a possible major role for enterotoxins. Sci. Rep. 7, 12508 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. Fredericksen, M. A. et al. Three-dimensional visualization and a deep-learning model reveal complex fungal parasite networks in behaviorally manipulated ants. Proc. Natl Acad. Sci. USA 114, 12590–12595 (2017).

    CAS  PubMed  Google Scholar 

  102. Garcia, C. R. S., Markus, R. P. & Madeira, L. Tertian and quartan fevers: temporal regulation in malarial infection. J. Biol. Rhythms 16, 436–443 (2001).

    CAS  PubMed  Google Scholar 

  103. O’Donnell, A. J., Schneider, P., McWatters, H. G. & Reece, S. E. Fitness costs of disrupting circadian rhythms in malaria parasites. Proc. Biol. Sci. 278, 2429–2436 (2011).

    PubMed  PubMed Central  Google Scholar 

  104. Rund, S. S. C., Hou, T. Y., Ward, S. M., Collins, F. H. & Duffield, G. E. Genome-wide profiling of diel and circadian gene expression in the malaria vector. Proc. Natl Acad. Sci. USA 108, E421–E430 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Darwin Trust of Edinburgh (M.L.W.), the National Science Foundation (M.Z.), NERC and BBSRC (NE/K006029/1; S.E.R.), the Royal Society (UF110155; S.E.R.), and the Wellcome Trust (202769/Z/16/Z; S.E.R.) for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

S.E.R. conceived the study, M.L.W. and S.E.R. drafted the manuscript, and all authors provided substantial input into ideas and the writing of subsequent drafts.

Corresponding author

Correspondence to Mary L. Westwood.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westwood, M.L., O’Donnell, A.J., de Bekker, C. et al. The evolutionary ecology of circadian rhythms in infection. Nat Ecol Evol 3, 552–560 (2019). https://doi.org/10.1038/s41559-019-0831-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-019-0831-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing