Article | Published:

Elevation shapes the reassembly of Anthropocene lizard communities

Nature Ecology & Evolution (2019) | Download Citation

Abstract

Human impacts, especially land-use change, are precipitating biodiversity loss. Yet anthropogenic drivers are layered atop natural biogeographic gradients. We ask whether the effects of anthropogenic habitat conversion depend on climatic context. We studied the structure of Anolis lizard communities in intact and human-modified habitats across natural climate gradients in the northern Dominican Republic. Using community-wide mark–resight methods to control for detection bias, we show that the effects of habitat conversion reverse with elevation (and thus macroclimate temperature). Deforestation reduces abundance and biomass in lowland communities but has no such effect at high elevations. In contrast, forest loss results in no compositional change in the lowlands, but complete community turnover between habitats in the highlands. These contrasting community-level patterns emerge from consistent responses of individual species based on their thermal niches. Community reorganization in the highlands stems from thermal niche tracking and habitat switching by abundant lowland species. We find no support for the hypothesis that climate generalists outperform specialists to succeed in anthropogenic habitats. Instead, warm-climate specialists dominate anthropogenic habitats, even in cool macroclimates. Human impacts interact with pre-existing environmental gradients to reorganize biodiversity. Leveraging a biogeographic perspective will provide insight into the future communities of life on Earth.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Code availability

The codes for the multispecies mark–resight model and for all analyses and figures are available in the Figshare repository (https://doi.org/10.6084/m9.figshare.7476413).

Data availability

The raw observation and inferred abundance datasets derived from the multi-species mark-resight model are available in the Figshare repository (https://doi.org/10.6084/m9.figshare.7476413).

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Ellis, E. C., Klein Goldewijk, K., Siebert, S., Lightman, D. & Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 589–606 (2010).

  2. 2.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

  3. 3.

    Mendenhall, C. D., Shields-Estrada, A., Krishnaswami, A. J. & Daily, G. C. Quantifying and sustaining biodiversity in tropical agricultural landscapes. Proc. Natl Acad. Sci. USA 113, 14544–14551 (2016).

  4. 4.

    Mantyka-Pringle, C. S., Martin, T. G. & Rhodes, J. R. Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Glob. Change Biol. 18, 1239–1252 (2012).

  5. 5.

    Young, K. R. Biogeography of the Anthropocene. Prog. Phys. Geogr. 38, 664–673 (2014).

  6. 6.

    McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 30, 104–113 (2015).

  7. 7.

    Kathleen Lyons, S. et al. Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature 529, 80–83 (2015).

  8. 8.

    Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).

  9. 9.

    Helmus, M. R., Mahler, D. L. & Losos, J. B. Island biogeography of the Anthropocene. Nature 513, 543–546 (2014).

  10. 10.

    Mendenhall, C. D., Karp, D. S., Meyer, C. F. J., Hadly, E. A. & Daily, G. C. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509, 213–217 (2014).

  11. 11.

    Kremen, C. & M’Gonigle, L. K. Small-scale restoration in intensive agricultural landscapes supports more specialized and less mobile pollinator species. J. Appl. Ecol. 52, 602–610 (2015).

  12. 12.

    De Castro Solar, R. R. et al. How pervasive is biotic homogenization in human-modified tropical forest landscapes? Ecol. Lett. 18, 1108–1118 (2015).

  13. 13.

    Karp, D. S. et al. Intensive agriculture erodes β-diversity at large scales. Ecol. Lett. 15, 963–970 (2012).

  14. 14.

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

  15. 15.

    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).

  16. 16.

    Supp, S. R. & Ernest, S. K. M. Species-level and community-level responses to disturbance: a cross-community analysis. Ecology 95, 1717–1723 (2014).

  17. 17.

    Bartomeus, I., Cariveau, D. P., Harrison, T. & Winfree, R. On the inconsistency of pollinator species traits for predicting either response to land-use change or functional contribution. Oikos 127, 306–315 (2018).

  18. 18.

    Hatfield, J., Orme, C. D. L., Tobias, J. A. & Banks-Leite, C. Trait-based indicators of bird species sensitivity to habitat loss are effective within but not across data sets. Ecol. Appl. 28, 28–34 (2018).

  19. 19.

    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).

  20. 20.

    Swihart, R. K., Gehring, T. M., Kolozsvary, M. B. & Nupp, T. E. Responses of ‘resistant’ vertebrates to habitat loss and fragmentation: the importance of niche breadth and range boundaries. Divers. Distrib. 9, 1–18 (2003).

  21. 21.

    Warren, M. S. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65–69 (2001).

  22. 22.

    De Coster, G., Banks-Leite, C. & Metzger, J. P. Atlantic forest bird communities provide different but not fewer functions after habitat loss. Proc. R. Soc. B 282, 20142844 (2015).

  23. 23.

    Huey, R. B. et al. Why tropical forest lizards are vulnerable to climate warming. Proc. R. Soc. B 276, 1939–1948 (2009).

  24. 24.

    Colles, A., Liow, L. H. & Prinzing, A. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol. Lett. 12, 849–863 (2009).

  25. 25.

    Frishkoff, L. O., Hadly, E. A. & Daily, G. C. Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles. Glob. Change Biol. 21, 3901–3916 (2015).

  26. 26.

    Nowakowski, A. J., Veiman-Echeverria, M., Kurz, D. J. & Donnelly, M. A. Evaluating connectivity for tropical amphibians using empirically derived resistance surfaces. Ecol. Appl. 25, 928–942 (2015).

  27. 27.

    Nowakowski, A. J. et al. Tropical amphibians in shifting thermal landscapes under land use and climate change. Conserv. Biol. 31, 1–31 (2017).

  28. 28.

    Da Cunha Bitar, Y. O., Juen, L., Pinheiro, L. C. & Santos-Costa, M. C. Anuran beta diversity in a mosaic anthropogenic landscape in transitional Amazon. J. Herpetol. 49, 75–82 (2015).

  29. 29.

    Frishkoff, L. O. et al. Climate change and habitat conversion favour the same species. Ecol. Lett. 19, 1081–1090 (2016).

  30. 30.

    Nowakowski, A. J., Frishkoff, L. O., Thompson, M. E. Smith, T. M. & Todd, B. D. Phylogenetic homogenization of amphibian assemblages in human-altered habitats across the globe. Proc. Natl Acad. Sci. USA 115, E3454–E3462 (2018).

  31. 31.

    Vitousek, P. M., Ehrlich, P. R., Ehrlich, A. H. & Matson, P. A. Human appropriation of the products of photosynthesis. Bioscience 36, 368–373 (1986).

  32. 32.

    Haberl, H. et al. Human appropriation of net primary production and species diversity in agricultural landscapes. Agric. Ecosyst. Environ. 102, 213–218 (2004).

  33. 33.

    González del Pliego, P. et al. Thermally buffered microhabitats recovery in tropical secondary forests following land abandonment. Biol. Conserv. 201, 385–395 (2016).

  34. 34.

    McCain, C. M. Global analysis of reptile elevational diversity. Glob. Ecol. Biogeogr. 19, 541–553 (2010).

  35. 35.

    Girardin, C. A. J. et al. Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Glob. Change Biol. 16, 3176–3192 (2010).

  36. 36.

    Waide, R. B., Zimmerman, J. K. & Scatena, F. N. Controls of primary productivity: lessons from the Luquillo Mountains in Puerto Rico. Ecology 79, 31–37 (1998).

  37. 37.

    Huang, S. P., Porter, W. P., Tu, M. C. & Chiou, C. R. Forest cover reduces thermally suitable habitats and affects responses to a warmer climate predicted in a high-elevation lizard. Oecologia 175, 25–35 (2014).

  38. 38.

    Rittenhouse, T. A. G., Harper, E. B., Rehard, L. R. & Semlitsch, R. D. The role of microhabitats in the desiccation and survival of anurans in recently harvested oak–hickory forest. Copeia 2008, 807–814 (2008).

  39. 39.

    Nowakowski, A. J. et al. Thermal biology mediates responses of amphibians and reptiles to habitat modification. Ecol. Lett. 21, 345–355 (2018).

  40. 40.

    Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).

  41. 41.

    Drapeau, P., Villard, M. A., Leduc, A. & Hannon, S. J. Natural disturbance regimes as templates for the response of bird species assemblages to contemporary forest management. Divers. Distrib. 22, 385–399 (2016).

  42. 42.

    Bellingham, P. J., Tanner, E. V. J., Rich, P. M. & Goodland, T. C. R. Changes in light below the canopy of a Jamaican montane rainforest after a hurricane. Biotropica 12, 699–722 (1996).

  43. 43.

    Clavero, M. & Brotons, L. Functional homogenization of bird communities along habitat gradients: accounting for niche multidimensionality. Glob. Ecol. Biogeogr. 19, 684–696 (2010).

  44. 44.

    Barnagaud, J.-Y., Barbaro, L., Hampe, A., Jiguet, F. & Archaux, F. Species’ thermal preferences affect forest bird communities along landscape and local scale habitat gradients. Ecography 36, 1218–1226 (2013).

  45. 45.

    Labra, A., Pienaar, J. & Hansen, T. F. Evolution of thermal physiology in Liolaemus lizards: adaptation, phylogenetic inertia, and niche tracking. Am. Nat. 174, 204–220 (2009).

  46. 46.

    Navas, C. A. Herpetological diversity along Andean elevational gradients: links with physiological ecology and evolutionary physiology. Comp. Biochem. Physiol. A 133, 469–485 (2002).

  47. 47.

    Nowakowski, A. J., Frishkoff, L. O., Agha, M., Todd, B. D. & Scheffers, B. R. Changing thermal landscapes: merging climate science and landscape ecology through thermal biology. Curr. Landsc. Ecol. Rep. 3, 57–72 (2018).

  48. 48.

    Hertz, P. E. & Huey, R. B. Compensation for altitudinal changes in the thermal environment by some Anolis lizards on Hispaniola. Ecology 62, 515–521 (1981).

  49. 49.

    Larsen, T. H. Upslope range shifts of Andean dung beetles in response to deforestation: compounding and confounding effects of microclimatic change. Biotropica 44, 82–89 (2012).

  50. 50.

    Muñoz, M. M. & Losos, J. B. Thermoregulatory behavior simultaneously promotes and forestalls evolution in a tropical lizard. Am. Nat. 191, E15–E26 (2018).

  51. 51.

    Gunderson, A. R., Mahler, D. L. & Leal, M. Thermal niche evolution across replicated Anolis lizard adaptive radiations. Proc. R. Soc. B 285, 20172241 (2018).

  52. 52.

    Sreekar, R. et al. Horizontal and vertical species turnover in tropical birds in habitats with differing land use. Biol. Lett. 13, 20170186 (2017).

  53. 53.

    Karp, D. S. et al. Agriculture erases climate-driven β-diversity in Neotropical bird communities. Glob. Change Biol. 24, 338–349 (2018).

  54. 54.

    Jeschke, J. M. & Strayer, D. L. Determinants of vertebrate invasion success in Europe and North America. Glob. Change Biol. 12, 1608–1619 (2006).

  55. 55.

    Sol, D., Bartomeus, I. & Griffin, A. S. The paradox of invasion in birds: competitive superiority or ecological opportunism? Oecologia 169, 553–564 (2012).

  56. 56.

    Guo, Q. & Ricklefs, R. E. Domestic exotics and the perception of invasibility. Divers. Distrib. 16, 1034–1039 (2010).

  57. 57.

    Bennett, J. M., Clarke, R. H., Horrocks, G. F. B., Thomson, J. R. & Mac Nally, R. Climate drying amplifies the effects of land-use change and interspecific interactions on birds. Landsc. Ecol. 30, 2031–2043 (2015).

  58. 58.

    Sirami, C. et al. Impacts of global change on species distributions: obstacles and solutions to integrate climate and land use. Glob. Ecol. Biogeogr. 26, 385–394 (2017).

  59. 59.

    Monagan, I., Morris, J., Rabosky, A., Perfecto, I. & Vandermeer, J. Anolis lizards as biocontrol agents in mainland and island agroecosystems. Ecol. Evol. 7, 2193–2203 (2017).

  60. 60.

    Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).

  61. 61.

    Losos, J. B. Lizards in an Evolutionary Tree (Univ. California Press, Oakland, CA, 2009).

  62. 62.

    Heckel, D. G. & Roughgarden, J. A technique for estimating the size of lizard populations. Ecology 60, 966–975 (1979).

  63. 63.

    Royle, J. A. & Dorazio, R. M. Hierarchical Modeling and Inference in Ecology (Academic Press, Boston, MA, 2008).

  64. 64.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

  65. 65.

    Plummer, M. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. Proc. 3rd International Workshop on Distributed Statistical Computing (DSC, 2003).

  66. 66.

    Su, Y.-S. & Yajima, M. R2jags: a package for running jags from R, V3.4.4 (2014).

  67. 67.

    Baselga, A. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol. Evol. 4, 552–557 (2013).

  68. 68.

    Baselga, A. & Orme, C. D. L. Betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).

  69. 69.

    Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).

  70. 70.

    Legendre, P., Lapointe, F.-J. & Casgrain, P. Modeling brain evolution from behavior: a permutational regression approach. Evolution 48, 1487–1499 (1994).

  71. 71.

    Godsoe, W., Jankowski, J., Holt, R. D. & Gravel, D. Integrating biogeography with contemporary niche theory. Trends Ecol. Evol. 32, 488–499 (2017).

Download references

Acknowledgements

We thank C. K. Boccia, S. Senthivasan, I. Borges, M. Balanaser, B. Downer-Bartholomew, M. A. Landestoy, M. J. Rodríguez Bobadilla, I. J. Wang, G. O. U. Wogan, P. L. Skipwith and L. Maier for help during fieldwork. Research permission was granted by the Ministerio de Medio Ambiente y Recursos Naturales, Dominican Republic (0000818). A NSERC Discovery Grant (RGPIN-2015-04334) provided research funding. This research complies with CCAC ethics guidelines and was approved by the University of Toronto Local Animal Care Committee (AUC Protocol 20011469).

Author information

Affiliations

  1. Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada

    • Luke O. Frishkoff
    • , George Sandler
    •  & D. Luke Mahler
  2. Department of Biology, University of Texas at Arlington, Arlington, TX, USA

    • Luke O. Frishkoff
  3. National Museum of Natural History Prof. Eugenio de Jesús Marcano, Santo Domingo, Dominican Republic

    • Eveling Gabot
    •  & Cristian Marte

Authors

  1. Search for Luke O. Frishkoff in:

  2. Search for Eveling Gabot in:

  3. Search for George Sandler in:

  4. Search for Cristian Marte in:

  5. Search for D. Luke Mahler in:

Contributions

L.O.F. and D.L.M. designed the study. All authors collected the data. L.O.F. analysed the data. L.O.F. wrote the initial manuscript draft with D.L.M. All authors contributed to revisions.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Luke O. Frishkoff.

Supplementary information

  1. Supplementary Information

    Supplementary Methods, Supplementary Figures 1–3, Supplementary Tables 1–7 and Supplementary References

  2. Reporting Summary

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41559-019-0819-0