Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Elevation shapes the reassembly of Anthropocene lizard communities

Abstract

Human impacts, especially land-use change, are precipitating biodiversity loss. Yet anthropogenic drivers are layered atop natural biogeographic gradients. We ask whether the effects of anthropogenic habitat conversion depend on climatic context. We studied the structure of Anolis lizard communities in intact and human-modified habitats across natural climate gradients in the northern Dominican Republic. Using community-wide mark–resight methods to control for detection bias, we show that the effects of habitat conversion reverse with elevation (and thus macroclimate temperature). Deforestation reduces abundance and biomass in lowland communities but has no such effect at high elevations. In contrast, forest loss results in no compositional change in the lowlands, but complete community turnover between habitats in the highlands. These contrasting community-level patterns emerge from consistent responses of individual species based on their thermal niches. Community reorganization in the highlands stems from thermal niche tracking and habitat switching by abundant lowland species. We find no support for the hypothesis that climate generalists outperform specialists to succeed in anthropogenic habitats. Instead, warm-climate specialists dominate anthropogenic habitats, even in cool macroclimates. Human impacts interact with pre-existing environmental gradients to reorganize biodiversity. Leveraging a biogeographic perspective will provide insight into the future communities of life on Earth.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Locations of study regions and distribution of canopy openness and elevation across study plots.
Fig. 2: Effect of elevation and canopy openness on species richness, abundance and biomass.
Fig. 3: Non-metric multidimensional scaling based on the balanced component of the Bray–Curtis dissimilarity index of posterior mean abundance of Anolis species in each plot.
Fig. 4: Effects of elevation and site type on within- and between-habitat β diversity.
Fig. 5: Negative interaction effects between MAT and canopy openness and their impact on species abundance.

Code availability

The codes for the multispecies mark–resight model and for all analyses and figures are available in the Figshare repository (https://doi.org/10.6084/m9.figshare.7476413).

Data availability

The raw observation and inferred abundance datasets derived from the multi-species mark-resight model are available in the Figshare repository (https://doi.org/10.6084/m9.figshare.7476413).

References

  1. 1.

    Ellis, E. C., Klein Goldewijk, K., Siebert, S., Lightman, D. & Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 589–606 (2010).

    Google Scholar 

  2. 2.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    Mendenhall, C. D., Shields-Estrada, A., Krishnaswami, A. J. & Daily, G. C. Quantifying and sustaining biodiversity in tropical agricultural landscapes. Proc. Natl Acad. Sci. USA 113, 14544–14551 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Mantyka-Pringle, C. S., Martin, T. G. & Rhodes, J. R. Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Glob. Change Biol. 18, 1239–1252 (2012).

    Article  Google Scholar 

  5. 5.

    Young, K. R. Biogeography of the Anthropocene. Prog. Phys. Geogr. 38, 664–673 (2014).

    Article  Google Scholar 

  6. 6.

    McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 30, 104–113 (2015).

    Article  Google Scholar 

  7. 7.

    Kathleen Lyons, S. et al. Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature 529, 80–83 (2015).

    Article  Google Scholar 

  8. 8.

    Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Helmus, M. R., Mahler, D. L. & Losos, J. B. Island biogeography of the Anthropocene. Nature 513, 543–546 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Mendenhall, C. D., Karp, D. S., Meyer, C. F. J., Hadly, E. A. & Daily, G. C. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509, 213–217 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Kremen, C. & M’Gonigle, L. K. Small-scale restoration in intensive agricultural landscapes supports more specialized and less mobile pollinator species. J. Appl. Ecol. 52, 602–610 (2015).

    Article  Google Scholar 

  12. 12.

    De Castro Solar, R. R. et al. How pervasive is biotic homogenization in human-modified tropical forest landscapes? Ecol. Lett. 18, 1108–1118 (2015).

    Article  Google Scholar 

  13. 13.

    Karp, D. S. et al. Intensive agriculture erodes β-diversity at large scales. Ecol. Lett. 15, 963–970 (2012).

    Article  Google Scholar 

  14. 14.

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Supp, S. R. & Ernest, S. K. M. Species-level and community-level responses to disturbance: a cross-community analysis. Ecology 95, 1717–1723 (2014).

    Article  Google Scholar 

  17. 17.

    Bartomeus, I., Cariveau, D. P., Harrison, T. & Winfree, R. On the inconsistency of pollinator species traits for predicting either response to land-use change or functional contribution. Oikos 127, 306–315 (2018).

    Article  Google Scholar 

  18. 18.

    Hatfield, J., Orme, C. D. L., Tobias, J. A. & Banks-Leite, C. Trait-based indicators of bird species sensitivity to habitat loss are effective within but not across data sets. Ecol. Appl. 28, 28–34 (2018).

    Article  Google Scholar 

  19. 19.

    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).

    CAS  Article  Google Scholar 

  20. 20.

    Swihart, R. K., Gehring, T. M., Kolozsvary, M. B. & Nupp, T. E. Responses of ‘resistant’ vertebrates to habitat loss and fragmentation: the importance of niche breadth and range boundaries. Divers. Distrib. 9, 1–18 (2003).

    Article  Google Scholar 

  21. 21.

    Warren, M. S. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65–69 (2001).

    CAS  Article  Google Scholar 

  22. 22.

    De Coster, G., Banks-Leite, C. & Metzger, J. P. Atlantic forest bird communities provide different but not fewer functions after habitat loss. Proc. R. Soc. B 282, 20142844 (2015).

    Article  Google Scholar 

  23. 23.

    Huey, R. B. et al. Why tropical forest lizards are vulnerable to climate warming. Proc. R. Soc. B 276, 1939–1948 (2009).

    Article  Google Scholar 

  24. 24.

    Colles, A., Liow, L. H. & Prinzing, A. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol. Lett. 12, 849–863 (2009).

    Article  Google Scholar 

  25. 25.

    Frishkoff, L. O., Hadly, E. A. & Daily, G. C. Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles. Glob. Change Biol. 21, 3901–3916 (2015).

    Article  Google Scholar 

  26. 26.

    Nowakowski, A. J., Veiman-Echeverria, M., Kurz, D. J. & Donnelly, M. A. Evaluating connectivity for tropical amphibians using empirically derived resistance surfaces. Ecol. Appl. 25, 928–942 (2015).

    Article  Google Scholar 

  27. 27.

    Nowakowski, A. J. et al. Tropical amphibians in shifting thermal landscapes under land use and climate change. Conserv. Biol. 31, 1–31 (2017).

    Article  Google Scholar 

  28. 28.

    Da Cunha Bitar, Y. O., Juen, L., Pinheiro, L. C. & Santos-Costa, M. C. Anuran beta diversity in a mosaic anthropogenic landscape in transitional Amazon. J. Herpetol. 49, 75–82 (2015).

    Article  Google Scholar 

  29. 29.

    Frishkoff, L. O. et al. Climate change and habitat conversion favour the same species. Ecol. Lett. 19, 1081–1090 (2016).

    Article  Google Scholar 

  30. 30.

    Nowakowski, A. J., Frishkoff, L. O., Thompson, M. E. Smith, T. M. & Todd, B. D. Phylogenetic homogenization of amphibian assemblages in human-altered habitats across the globe. Proc. Natl Acad. Sci. USA 115, E3454–E3462 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Vitousek, P. M., Ehrlich, P. R., Ehrlich, A. H. & Matson, P. A. Human appropriation of the products of photosynthesis. Bioscience 36, 368–373 (1986).

    Article  Google Scholar 

  32. 32.

    Haberl, H. et al. Human appropriation of net primary production and species diversity in agricultural landscapes. Agric. Ecosyst. Environ. 102, 213–218 (2004).

    Article  Google Scholar 

  33. 33.

    González del Pliego, P. et al. Thermally buffered microhabitats recovery in tropical secondary forests following land abandonment. Biol. Conserv. 201, 385–395 (2016).

    Article  Google Scholar 

  34. 34.

    McCain, C. M. Global analysis of reptile elevational diversity. Glob. Ecol. Biogeogr. 19, 541–553 (2010).

    Google Scholar 

  35. 35.

    Girardin, C. A. J. et al. Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Glob. Change Biol. 16, 3176–3192 (2010).

    Article  Google Scholar 

  36. 36.

    Waide, R. B., Zimmerman, J. K. & Scatena, F. N. Controls of primary productivity: lessons from the Luquillo Mountains in Puerto Rico. Ecology 79, 31–37 (1998).

    Article  Google Scholar 

  37. 37.

    Huang, S. P., Porter, W. P., Tu, M. C. & Chiou, C. R. Forest cover reduces thermally suitable habitats and affects responses to a warmer climate predicted in a high-elevation lizard. Oecologia 175, 25–35 (2014).

    Article  Google Scholar 

  38. 38.

    Rittenhouse, T. A. G., Harper, E. B., Rehard, L. R. & Semlitsch, R. D. The role of microhabitats in the desiccation and survival of anurans in recently harvested oak–hickory forest. Copeia 2008, 807–814 (2008).

    Article  Google Scholar 

  39. 39.

    Nowakowski, A. J. et al. Thermal biology mediates responses of amphibians and reptiles to habitat modification. Ecol. Lett. 21, 345–355 (2018).

    Article  Google Scholar 

  40. 40.

    Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).

    CAS  Article  Google Scholar 

  41. 41.

    Drapeau, P., Villard, M. A., Leduc, A. & Hannon, S. J. Natural disturbance regimes as templates for the response of bird species assemblages to contemporary forest management. Divers. Distrib. 22, 385–399 (2016).

    Article  Google Scholar 

  42. 42.

    Bellingham, P. J., Tanner, E. V. J., Rich, P. M. & Goodland, T. C. R. Changes in light below the canopy of a Jamaican montane rainforest after a hurricane. Biotropica 12, 699–722 (1996).

    Google Scholar 

  43. 43.

    Clavero, M. & Brotons, L. Functional homogenization of bird communities along habitat gradients: accounting for niche multidimensionality. Glob. Ecol. Biogeogr. 19, 684–696 (2010).

    Google Scholar 

  44. 44.

    Barnagaud, J.-Y., Barbaro, L., Hampe, A., Jiguet, F. & Archaux, F. Species’ thermal preferences affect forest bird communities along landscape and local scale habitat gradients. Ecography 36, 1218–1226 (2013).

    Article  Google Scholar 

  45. 45.

    Labra, A., Pienaar, J. & Hansen, T. F. Evolution of thermal physiology in Liolaemus lizards: adaptation, phylogenetic inertia, and niche tracking. Am. Nat. 174, 204–220 (2009).

    Article  Google Scholar 

  46. 46.

    Navas, C. A. Herpetological diversity along Andean elevational gradients: links with physiological ecology and evolutionary physiology. Comp. Biochem. Physiol. A 133, 469–485 (2002).

    Article  Google Scholar 

  47. 47.

    Nowakowski, A. J., Frishkoff, L. O., Agha, M., Todd, B. D. & Scheffers, B. R. Changing thermal landscapes: merging climate science and landscape ecology through thermal biology. Curr. Landsc. Ecol. Rep. 3, 57–72 (2018).

    Article  Google Scholar 

  48. 48.

    Hertz, P. E. & Huey, R. B. Compensation for altitudinal changes in the thermal environment by some Anolis lizards on Hispaniola. Ecology 62, 515–521 (1981).

    Article  Google Scholar 

  49. 49.

    Larsen, T. H. Upslope range shifts of Andean dung beetles in response to deforestation: compounding and confounding effects of microclimatic change. Biotropica 44, 82–89 (2012).

    Article  Google Scholar 

  50. 50.

    Muñoz, M. M. & Losos, J. B. Thermoregulatory behavior simultaneously promotes and forestalls evolution in a tropical lizard. Am. Nat. 191, E15–E26 (2018).

    Article  Google Scholar 

  51. 51.

    Gunderson, A. R., Mahler, D. L. & Leal, M. Thermal niche evolution across replicated Anolis lizard adaptive radiations. Proc. R. Soc. B 285, 20172241 (2018).

    Article  Google Scholar 

  52. 52.

    Sreekar, R. et al. Horizontal and vertical species turnover in tropical birds in habitats with differing land use. Biol. Lett. 13, 20170186 (2017).

    Article  Google Scholar 

  53. 53.

    Karp, D. S. et al. Agriculture erases climate-driven β-diversity in Neotropical bird communities. Glob. Change Biol. 24, 338–349 (2018).

    Article  Google Scholar 

  54. 54.

    Jeschke, J. M. & Strayer, D. L. Determinants of vertebrate invasion success in Europe and North America. Glob. Change Biol. 12, 1608–1619 (2006).

    Article  Google Scholar 

  55. 55.

    Sol, D., Bartomeus, I. & Griffin, A. S. The paradox of invasion in birds: competitive superiority or ecological opportunism? Oecologia 169, 553–564 (2012).

    Article  Google Scholar 

  56. 56.

    Guo, Q. & Ricklefs, R. E. Domestic exotics and the perception of invasibility. Divers. Distrib. 16, 1034–1039 (2010).

    Article  Google Scholar 

  57. 57.

    Bennett, J. M., Clarke, R. H., Horrocks, G. F. B., Thomson, J. R. & Mac Nally, R. Climate drying amplifies the effects of land-use change and interspecific interactions on birds. Landsc. Ecol. 30, 2031–2043 (2015).

    Article  Google Scholar 

  58. 58.

    Sirami, C. et al. Impacts of global change on species distributions: obstacles and solutions to integrate climate and land use. Glob. Ecol. Biogeogr. 26, 385–394 (2017).

    Article  Google Scholar 

  59. 59.

    Monagan, I., Morris, J., Rabosky, A., Perfecto, I. & Vandermeer, J. Anolis lizards as biocontrol agents in mainland and island agroecosystems. Ecol. Evol. 7, 2193–2203 (2017).

    Article  Google Scholar 

  60. 60.

    Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Article  Google Scholar 

  61. 61.

    Losos, J. B. Lizards in an Evolutionary Tree (Univ. California Press, Oakland, CA, 2009).

  62. 62.

    Heckel, D. G. & Roughgarden, J. A technique for estimating the size of lizard populations. Ecology 60, 966–975 (1979).

    Article  Google Scholar 

  63. 63.

    Royle, J. A. & Dorazio, R. M. Hierarchical Modeling and Inference in Ecology (Academic Press, Boston, MA, 2008).

  64. 64.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  65. 65.

    Plummer, M. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. Proc. 3rd International Workshop on Distributed Statistical Computing (DSC, 2003).

  66. 66.

    Su, Y.-S. & Yajima, M. R2jags: a package for running jags from R, V3.4.4 (2014).

  67. 67.

    Baselga, A. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol. Evol. 4, 552–557 (2013).

    Article  Google Scholar 

  68. 68.

    Baselga, A. & Orme, C. D. L. Betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).

    Article  Google Scholar 

  69. 69.

    Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).

    Article  Google Scholar 

  70. 70.

    Legendre, P., Lapointe, F.-J. & Casgrain, P. Modeling brain evolution from behavior: a permutational regression approach. Evolution 48, 1487–1499 (1994).

    Article  Google Scholar 

  71. 71.

    Godsoe, W., Jankowski, J., Holt, R. D. & Gravel, D. Integrating biogeography with contemporary niche theory. Trends Ecol. Evol. 32, 488–499 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. K. Boccia, S. Senthivasan, I. Borges, M. Balanaser, B. Downer-Bartholomew, M. A. Landestoy, M. J. Rodríguez Bobadilla, I. J. Wang, G. O. U. Wogan, P. L. Skipwith and L. Maier for help during fieldwork. Research permission was granted by the Ministerio de Medio Ambiente y Recursos Naturales, Dominican Republic (0000818). A NSERC Discovery Grant (RGPIN-2015-04334) provided research funding. This research complies with CCAC ethics guidelines and was approved by the University of Toronto Local Animal Care Committee (AUC Protocol 20011469).

Author information

Affiliations

Authors

Contributions

L.O.F. and D.L.M. designed the study. All authors collected the data. L.O.F. analysed the data. L.O.F. wrote the initial manuscript draft with D.L.M. All authors contributed to revisions.

Corresponding author

Correspondence to Luke O. Frishkoff.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–3, Supplementary Tables 1–7 and Supplementary References

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frishkoff, L.O., Gabot, E., Sandler, G. et al. Elevation shapes the reassembly of Anthropocene lizard communities. Nat Ecol Evol 3, 638–646 (2019). https://doi.org/10.1038/s41559-019-0819-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing