Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Diversity of cytosine methylation across the fungal tree of life

Abstract

The generation of thousands of fungal genomes is leading to a better understanding of genes and genomic organization within the kingdom. However, the epigenome, which includes DNA and chromatin modifications, remains poorly investigated in fungi. Large comparative studies in animals and plants have deepened our understanding of epigenomic variation, particularly of the modified base 5-methylcytosine (5mC), but taxonomic sampling of disparate groups is needed to develop unifying explanations for 5mC variation. Here, we utilize the largest phylogenetic resolution of 5mC methyltransferases (5mC MTases) and genome evolution to better understand levels and patterns of 5mC across fungi. We show that extant 5mC MTase genotypes are descendent from ancestral maintenance and de novo genotypes, whereas the 5mC MTases DIM-2 and RID are more recently derived, and that 5mC levels are correlated with 5mC MTase genotype and transposon content. Our survey also revealed that fungi lack canonical gene-body methylation, which distinguishes fungal epigenomes from certain insect and plant species. However, some fungal species possess independently derived clusters of contiguous 5mC encompassing many genes. In some cases, DNA repair pathways and the N6-methyladenine DNA modification negatively coevolved with 5mC pathways, which additionally contributed to interspecific epigenomic variation across fungi.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Genome assemblies and gene annotations are available via the URL links listed in Supplementary Table 2. Gene Expression Omnibus and SRA accessions for RNA-Seq and WGBS data generated and used in this study are provided in the Methods.

References

  1. Niederhuth, C. E. et al. Widespread natural variation of DNA methylation within angiosperms. Genome Biol. 17, 194 (2016).

    PubMed  PubMed Central  Google Scholar 

  2. Takuno, S., Ran, J.-H. & Gaut, B. S. Evolutionary patterns of genic DNA methylation vary across land plants. Nat. Plants 2, 15222 (2016).

    CAS  PubMed  Google Scholar 

  3. Bewick, A. J., Vogel, K. J., Moore, A. J. & Schmitz, R. J. Evolution of DNA methylation across insects. Mol. Biol. Evol. 34, 654–665 (2017).

    CAS  PubMed  Google Scholar 

  4. Glastad, K. G. et al. Variation in DNA methylation is not consistently reflected by sociality in Hymenoptera. Genome Biol. Evol. 9, 1687–1698 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Feng, S. et al. Conservation and divergence of methylation patterning in plants and animals. Proc. Natl Acad. Sci. USA 107, 8689–8694 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zemach, A., McDaniel, I. E., Silva, P. & Zilberman, D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328, 916–919 (2010).

    CAS  PubMed  Google Scholar 

  7. Bewick, A. J. et al. The evolution of CHROMOMETHYLASES and gene body DNA methylation in plants. Genome. Biol. 18, 65 (2017).

    PubMed  PubMed Central  Google Scholar 

  8. Rošić, S., Amouroux, R. et al. Evolutionary analysis indicates that DNA alkylation damage is a byproduct of cytosine DNA methyltransferase activity. Nat. Genet. 50, 452–459 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Galagan, J. E. & Selker, E. U. RIP: the evolutionary cost of genome defense. Trends Genet. 20, 417–423 (2004).

    CAS  PubMed  Google Scholar 

  10. Gladyshev, E. & Kleckner, N. DNA sequence homology induces cytosine-to-thymine mutation by a heterochromatin-related pathway in Neurospora. Nat. Genet. 49, 887–894 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Spatafora, J. W. et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108, 1028–1046 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Stajich, J. E. Fungal genomes and insights into the evolution of the kingdom. Microbiol. Spectr. 5, FUNK-0055-2016 (2017).

    Google Scholar 

  13. Lewis, Z. A. et al. Relics of repeat-induced point mutation direct heterochromatin formation in Neurospora crassa. Genome Res. 19, 427–437 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, S.-Y. et al. Bisulfite sequencing reveals that Aspergillus flavus holds a hollow in DNA methylation. PLoS ONE 7, e30349 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Huff, J. T. & Zilberman, D. Dnmt1-independent CG methylation contributes to nucleosome positioning in diverse eukaryotes. Cell 156, 1286–1297 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jeon, J. et al. Genome-wide profiling of DNA methylation provides insights into epigenetic regulation of fungal development in a plant pathogenic fungus, Magnaporthe oryzae. Sci. Rep. 5, 8567 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Morselli, M. et al. In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse. eLife 4, e06205 (2015).

    PubMed  PubMed Central  Google Scholar 

  18. Wang, Y. L. et al. Genome-wide analysis of DNA methylation in the sexual stage of the insect pathogenic fungus Cordyceps militaris. Fungal Biol. 119, 1246–1254 (2015).

    CAS  PubMed  Google Scholar 

  19. Honda, S. et al. Dual chromatin recognition by the histone deacetylase complex HCHC is required for proper DNA methylation in Neurospora crassa. Proc. Natl Acad. Sci. USA 113, E6135–E6144 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, W. et al. Differential DNA methylation may contribute to temporal and spatial regulation of gene expression and the development of mycelia and conidia in entomopathogenic fungus Metarhizium robertsii. Fungal Biol. 121, 293–303 (2017).

    CAS  PubMed  Google Scholar 

  21. Selker, E. U. Premeiotic instability of repeated sequences in Neurospora crassa. Annu. Rev. Genet. 24, 579–613 (1990).

    CAS  PubMed  Google Scholar 

  22. Singer, M. J., Marcotte, B. A. & Selker, E. U. DNA methylation associated with repeat-induced point mutation in Neurospora crassa. Mol. Cell. Biol. 15, 5586–5597 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rhounim, L., Rossignol, J. L. & Faugeron, G. Epimutation of repeated genes in Ascobolus immersus. EMBO J. 11, 4451–4457 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rossignol, J. L. & Faugeron, G. Gene inactivation triggered by recognition between DNA repeats. Experientia 50, 307–317 (1994).

    CAS  PubMed  Google Scholar 

  25. Mondo, S. J. et al. Widespread adenine N6-methylation of active genes in fungi. Nat. Genet. 49, 964–968 (2017).

    CAS  PubMed  Google Scholar 

  26. Cokus, S. J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Urich, M. A., Nery, J. R., Lister, R., Schmitz, R. J. & Ecker, J. R. MethylC-Seq: base resolution whole genome bisulfite sequencing library preparation. Nat. Protoc. 10, 475–483 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hofmeister, B. T. & Schmitz, R. J. Enhanced JBrowse plugins for epigenomics data visualization. BMC Bioinformatics 19, 159 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. Catania, S. et al. Epigenetic maintenance of DNA methylation after evolutionary loss of the de novo methyltransferase. Preprint at https://www.biorxiv.org/content/early/2017/06/13/149385 (2017).

  30. Goll, M. G. et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311, 395–398 (2006).

    CAS  PubMed  Google Scholar 

  31. Goll, M. G. & Bestor, T. H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74, 481–514 (2005).

    CAS  PubMed  Google Scholar 

  32. Stroud, H. et al. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352–364 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bewick, A. J. & Schmitz, R. J. Gene body DNA methylation in plants. Curr. Opin. Plant Biol. 36, 103–110 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Takuno, S. & Gaut, B. S. Body-methylated genes in Arabidopsis thaliana are functionally important and evolve slowly. Mol. Biol. Evol. 1, 219–227 (2012).

    Google Scholar 

  35. Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126, 1189–1201 (2006).

    CAS  PubMed  Google Scholar 

  36. Zilberman, D. et al. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet. 39, 61–69 (2007).

    CAS  PubMed  Google Scholar 

  37. Bewick, A. J. et al. On the origin and evolutionary consequences of gene body DNA methylation. Proc. Natl Acad. Sci. USA 113, 9111–9116 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bonasio, R. et al. Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Curr. Biol. 22, 1755–1764 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Glastad, K. M., Gokhale, K., Liebig, J. & Goodisman, M. A. D. The caste- and sex-specific DNA methylome of the termite Zootermopsis nevadensis. Sci. Rep. 6, 37110 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Duncan, B. K. & Miller, J. H. Mutagenic deamination of cytosine residues in DNA. Nature 287, 560–561 (1980).

    CAS  PubMed  Google Scholar 

  42. Sedgwick, B. Repairing DNA-methylation damage. Nat. Rev. Mol. Cell Biol. 5, 148–157 (2004).

    CAS  PubMed  Google Scholar 

  43. Xiao, C. L. et al. N6-methyladenine DNA modification in the human genome. Mol. Cell 71, 306–318 (2018).

    CAS  PubMed  Google Scholar 

  44. Carlile, M. J., Watkinson, S. C. & Gooday G. W. The Fungi 2nd edn (Academic Press, London, 2001).

  45. Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mirarab, S. et al. PASTA: ultra-large multiple sequence alignment for nucleotide and amino-acid sequences. J. Comput. Biol. 22, 377–386 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    CAS  PubMed  Google Scholar 

  51. Popescu, A.-A., Huber, K. T. & Paradis, E. ape 3.0: new tools for distance based phylogenetics and evolutionary analysis in R. Bioinformatics 28, 1536–1537 (2012).

    CAS  PubMed  Google Scholar 

  52. Rouxel, T. et al. Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat-induced point mutations. Nat. Commun. 2, 202 (2011).

    PubMed  Google Scholar 

  53. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2011).

    Google Scholar 

  54. O’Donnell, K., Cigelnik, E. & Benny, G. L. Phylogenetic relationships among the Harpellales and Kickxellales. Mycologia 90, 624–639 (1998).

    Google Scholar 

  55. O’Donnell, K., Lutzoni, F., Ward, T. J. & Benny, G. L. Evolutionary relationships among mucoralean fungi (Zygomycota): evidence for family polyphyly on a large scale. Mycologia 93, 286–296 (2000).

    Google Scholar 

  56. Jones, T. et al. The diploid genome sequence of Candida albicans. Proc. Natl Acad. Sci. USA 101, 7329–7334 (2003).

    Google Scholar 

  57. Van het Hoog, M. et al. Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes. Genome Biol. 8, R52 (2007).

    PubMed  PubMed Central  Google Scholar 

  58. Espagne, E. et al. The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biol. 9, R77 (2008).

    PubMed  PubMed Central  Google Scholar 

  59. Butler, G. et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459, 657–662 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Stajich, J. E. et al. Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc. Natl Acad. Sci. USA 107, 11889–11894 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Amselem, J. et al. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet. 7, e1002230 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Floudas, D. et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336, 1715–1719 (2012).

    CAS  PubMed  Google Scholar 

  63. Olson, A. et al. Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen. New Phytol. 194, 1001–1013 (2012).

    PubMed  Google Scholar 

  64. Staats, M. & van Kan, J. A. Genome update of Botrytis cinerea strains B05.10 and T4. Eukaryot. Cell 11, 1413–1414 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chibucos, M. C., Crabtree, J., Nagaraj, S., Chaturvedi, S. & Chaturvedi, V. Draft genome sequences of human pathogenic fungus Geomyces pannorum sensu lato and bat white nose syndrome pathogen Geomyces (Pseudogymnoascus) destructans. Genome Announc. 1, e01045–13 (2013).

    PubMed  PubMed Central  Google Scholar 

  66. Muzzey, D., Schwartz, K., Weissman, J. S. & Sherlock, G. Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure. Genome Biol. 14, R97 (2013).

    PubMed  PubMed Central  Google Scholar 

  67. Toome, M. et al. Genome sequencing provides insight into the reproductive biology, nutritional mode and ploidy of the fern pathogen Mixia osmundae. New Phytol. 202, 554–564 (2013).

    PubMed  Google Scholar 

  68. Walter, G. et al. DNA barcoding in Mucorales: an inventory of biodiversity. Persoonia 30, 11–47 (2013).

    Google Scholar 

  69. Wiemann, P. et al. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog. 9, e1003475 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gostincar, C. et al. Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics 15, 549 (2014).

    PubMed  PubMed Central  Google Scholar 

  71. Ohm, R. A. et al. Genomics of wood-degrading fungi. Fungal Genet. Biol. 72, 82–90 (2014).

    CAS  PubMed  Google Scholar 

  72. Riley, R. et al. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc. Natl Acad. Sci. USA 111, 9923–9928 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Tretter, E. D. et al. An eight-gene molecular phylogeny of the Kickxellomycotina, including the first phylogenetic placement of Asellariales. Mycologia 106, 912–935 (2014).

    CAS  PubMed  Google Scholar 

  74. Chang, Y. et al. Phylogenomic analyses indicate that early fungi evolved digesting cell walls of algal ancestors of land plants. Genome Biol. Evol. 7, 1590–1601 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chatterjee, S. et al. Draft genome of a commonly misdiagnosed multidrug resistant pathogen Candida auris. BMC Genomics 16, 686 (2015).

    PubMed  PubMed Central  Google Scholar 

  76. Perlin, M. H. et al. Sex and parasites: genomic and transcriptomic analysis of Microbotryum lychnidis-dioicae, the biotrophic and plant-castrating anther smut fungus. BMC Genomics 16, 461 (2015).

    PubMed  PubMed Central  Google Scholar 

  77. Drees, K. P. et al. Use of multiple sequencing technologies to produce a high-quality genome of the fungus Pseudogymnoascus destructans, the causative agent of bat white-nose syndrome. Genome Announc. 4, e00445–16 (2016).

    PubMed  PubMed Central  Google Scholar 

  78. Kijpornyongpan, T. et al. Broad genomic sampling reveals a smut pathogenic ancestry of the fungal clade Ustilaginomycotina. Mol. Biol. Evol. 35, 1840–1854 (2018).

    CAS  PubMed  Google Scholar 

  79. Schultz, M. D. et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523, 212–216 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Martin, M. & Marcel, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Google Scholar 

  81. Langmead, B., Trapnell, C. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed  PubMed Central  Google Scholar 

  82. Goffeau, A. et al. Life with 6000 genes. Science 274, 563–567 (1996).

    Google Scholar 

  83. Galagan, J. E. et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422, 859–868 (2003).

    CAS  PubMed  Google Scholar 

  84. Dean, R. A. et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434, 980–986 (2005).

    CAS  PubMed  Google Scholar 

  85. Martin, F. et al. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452, 88–92 (2008).

    CAS  PubMed  Google Scholar 

  86. Martinez, D. et al. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc. Natl Acad. Sci. USA 106, 1954–1959 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sharpton, T. J. et al. Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res. 19, 1722–1731 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Gao, Q. et al. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet. 7, e1001264 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zheng, P. et al. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol. 12, R116 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Arnaud, M. B. et al. The Aspergillus genome database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Res. 40, D653–D659 (2012).

    CAS  PubMed  Google Scholar 

  91. Hu, X. et al. Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. Proc. Natl Acad. Sci. USA 111, 16796–16801 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Janbon, G. et al. Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation. PLoS Genet. 10, e1004261 (2014).

    PubMed  PubMed Central  Google Scholar 

  93. Corrochano, L. M. et al. Expansion of signal transduction pathways in fungi by extensive genome duplication. Curr. Biol. 26, 1577–1584 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Schultz, M. D., Schmitz, R. J. & Ecker, J. R. ‘Leveling’ the playing field for analyses of single-base resolution DNA methylomes. Trends Genet. 28, 583–585 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Alexa, A. & Rahnenfuhrer, J. topGO: enrichment analysis for Gene Ontology. R package version 2.32.0 (2016).

  96. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-Seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Grafen, A. The phylogenetic regression. Phil. Trans. R. Soc. Lond. B 326, 119–157 (1989).

    CAS  Google Scholar 

  99. Martins, E. P. & Hansen, T. F. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am. Nat. 149, 646–667 (1997).

    Google Scholar 

  100. Pagel, M. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc. R. Soc. Lond. B 255, 37–45 (1994).

    Google Scholar 

  101. Flutre, T., Duprat, E., Feuillet, C. & Quesneville, H. Considering transposable element diversification in de novo annotation approaches. PLoS ONE 6, e16526 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Bao, W., Kojima, K. K. & Kohany, O. RepBase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).

    PubMed  PubMed Central  Google Scholar 

  103. Margolin, B. S. et al. A methylated Neurospora 5S rRNA pseudogene contains a transposable element inactivated by repeat-induced point mutation. Genet. 149, 1787–1797 (1998).

    CAS  Google Scholar 

  104. Selker, E. U. et al. The methylated component of the Neurospora crassa genome. Nature 422, 893–897 (2003).

    CAS  PubMed  Google Scholar 

  105. Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

Download references

Acknowledgements

We thank E. Demers for DNA from Candida albicans, Clavispora lusitaniae and Candida auris, T. Giraud for DNA from M. lychnidis-dioicae A1, A. Idnurm for DNA from S. roseus, and N. Ponts for DNA from A. bisporus, B. cinerea, Fusarium fujikuroi, L. maculans ‘brassicae’ and P. anserina. We also thank M. Perlin for DNA from M. lychnidis-dioicae. We thank N. Rohr and T. Ethridge for WGBS library preparation for all species sequenced in this study except C. cinerea, H. irregulare and W. cocos. We thank D. Carter-House and J. Ortanez for DNA preparation of Zygomycetes Coemansia spiralis, Hesseltinella vesiculosa, Kirkomyces cordense, Lobosporangium transversale, Parasitella parasitica, P. blakesleeanus, R. spectabilis, S. fusiger and Syncephalis fuscata. We thank N. Morffy and Z. Lewis for useful feedback during manuscript preparation. We thank the following collaborators for the use of unpublished genic data: C. Aime, A. Andrianopoulos, D. Armaleo, G. Bills, G. Bonito, S. Branco, T. Bruns, K. Bushley, Y. Chang, I.-G. Choi, A. Churchill, L. Corrochano, C. Cuomo, A. Desirò, P. Dyer, J. Franciso, R. Gazis, J. Gladden, S. Goodwin, A. Gryganskyi, D. Hibbett, D. Johnson, A. Kohler, B. Lindahl, F. Lutzoni, J. Magnuson, J. Maria Barrasa, F. Martin, M. Milgroom, L. Nagy, W. Nierman, M. Nowrousian, D. Nuss, K. O’Donnell, R. Ohm, C. Pires, B. Schwessinger, S. Singer, B. Slippers, J. Spatafora, J. Taylor, A. Tsang, S. Unruh, K. Wolfe and L. Zettler. We also thank the Georgia Advanced Computing Resource Center and Georgia Genomics and Bioinformatics Core at the University of Georgia for sequencing and computational resources, respectively. This work was supported by the Office of the Vice President for Research at the University of Georgia (to R.J.S.) and US National Science Foundation grant DEB 1441715 (to J.E.S.). R.J.S. is a Pew Scholar in the Biomedical Sciences, supported by The Pew Charitable Trusts. Computational analysis on the University of California, Riverside High-Performance Computing Center cluster were supported by grants from the National Science Foundation (DBI-1429826) and National Institutes of Health (S10-OD016290). The work conducted by the US Department of Energy Joint Genome Institute—a DOE Office of Science User Facility—is supported by the Office of Science of the US Department of Energy under contract number DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

A.J.B., R.J.S. and J.E.S. designed the study. WGBS data were generated by R.J.S. A.J.B. analysed the data under the supervision of R.J.S. and J.E.S. B.T.H. built JBrowse genome browsers for all of the species used in the study. T.Y.J. and R.P. contributed WGBS data. S.J.M. and I.V.G. contributed genomic data.

Corresponding authors

Correspondence to Adam J. Bewick or Robert J. Schmitz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16

Reporting Summary

Supplementary Table 1

5mC DNA MTase and the tRNA methyltransferase DNMT2 annotations for 528 fungal species investigated in this study.

Supplementary Table 2

WGBS and mapping statistics for 40 fungal species investigated in this study.

Supplementary Table 3

Number of species per phylum for each observed 5mC MTase genotype.

Supplementary Table 4

5mC DNA MTase and the tRNA methyltransferase DNMT2 annotations for a subset of Animalia, Chlorophyta, Fungi, and Prokaryota. Protein models correspond to those used in Supplementary Fig. 2.

Supplementary Table 5

Number of CG-, CH-, and CN-enriched genes across fungal species investigated.

Supplementary Table 6

ALKBH annotations for Chordata, Fungi, and Nematoda investigated in this study. Protein models correspond to those used in Supplementary Fig. 15.

Supplementary Table 7

Results from Pagel’s test for correlated evolution.

Supplementary Table 8

Results from phylogenetic generalized least squares (PGLS).

Supplementary Table 9

Annotated proteins from fungal species containing the N-6 DNA Methylase domain (PF02384) as identified by Interproscan v5.23-62.0.

Supplementary Table 10

METTL annotations for fungal species investigated in this study. Protein models correspond to those used in Supplementary Fig. 16.

Supplementary Table 11

Annotated proteins for fungal species containing the domain the methyltransferase small domain (N6AMT1 proteins) as identified by Interproscan v5.23-62.0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bewick, A.J., Hofmeister, B.T., Powers, R.A. et al. Diversity of cytosine methylation across the fungal tree of life. Nat Ecol Evol 3, 479–490 (2019). https://doi.org/10.1038/s41559-019-0810-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-019-0810-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing