Abstract

Insight into the last eukaryotic common ancestor (LECA) is central to any phylogeny-based reconstruction of early eukaryotic evolution. Increasing amounts of data enable such reconstructions, without necessarily providing further insight into what LECA actually was. We consider four possible concepts of LECA: an abstract phylogenetic state, a single cell, a population, and a consortium of organisms. We argue that the view most realistically underlying work in the field is that of LECA as a population. Drawing on recent findings of genomically heterogeneous populations in eukaryotes (‘pangenomes’), we examine the evolutionary implications of a pangenomic LECA population. For instance, how does this concept affect standard expectations about the ecology, geography, fitness, and diversification of LECA? Does it affect evolutionary interpretations of LECA’s cellular functions? Finally, we examine whether this novel pangenomic concept of LECA has implications for phylogenetic reconstructions of early eukaryote evolution. Our aim is to add to the conceptual toolkit for developing theories of LECA and interpreting genomic datasets.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, R1177–R1192 (2017).

  2. 2.

    Makarova, K. S., Wolf, Y. I., Mekhedov, S. L., Mirkin, B. G. & Koonin, E. V. Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Res. 33, 4626–4638 (2005).

  3. 3.

    Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15, 711–723 (2017).

  4. 4.

    Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).

  5. 5.

    Field, M. C. & Dacks, J. B. First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Curr. Opin. Cell Biol. 21, 4–13 (2009).

  6. 6.

    Mast, F. D., Barlow, L. D., Rachubinski, R. A. & Dacks, J. B. Evolutionary mechanisms for establishing eukaryotic cellular complexity. Trends Cell Biol. 24, 435–442 (2014).

  7. 7.

    Koonin, E. V. The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol. 11, 209 (2010).

  8. 8.

    Butterfield, N. J. Early evolution of the Eukaryota. Front. Palaeontol. 58, 5–17 (2015).

  9. 9.

    Poole, A. M. & Neumann, N. Reconciling an archaeal origin of eukaryotes with engulfment: a biologically plausible update of the Eocyte hypothesis. Res. Microbiol. 162, 71–76 (2011).

  10. 10.

    Margulis, L., Chapman, M., Guerrero, R. & Hall, J. The last eukaryotic common ancestor (LECA): acquisition of cytoskeletal motility from aerotolerant spirochetes in the Proterozoic Eon. Proc. Natl. Acad. Sci. USA 103, 13080–13085 (2006).

  11. 11.

    Klöpper, T. H., Kienle, N., Fasshauer, D. & Munro, S. Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis. BMC Biol. 10, 71 (2012).

  12. 12.

    Vaškovičová, K. et al. Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life. Biol. Direct 8, 8 (2013).

  13. 13.

    Lane, N. Energetics and genetics across the prokaryote-eukaryote divide. Biol. Direct 6, 35 (2011).

  14. 14.

    Moreira, D. & López-García, P. Symbiosis between methanogenic archaea and delta-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J. Mol. Evol. 47, 517–530 (1998).

  15. 15.

    Koumandou, V. L. et al. Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit. Rev. Biochem. Mol. Biol. 48, 373–396 (2013).

  16. 16.

    Hampl, V. et al. Genetic evidence for a mitochondriate ancestry in the ‘amitochondriate’ flagellate Trimastix pyriformis. PLoS One 3, e1383 (2008).

  17. 17.

    Rivera, M. C., Jain, R., Moore, J. E. & Lake, J. A. Genomic evidence for two functionally distinct gene classes. Proc. Natl. Acad. Sci. USA 95, 6239–6244 (1998).

  18. 18.

    Dacks, J. & Roger, A. J. The first sexual lineage and the relevance of facultative sex. J. Mol. Evol. 48, 779–783 (1999).

  19. 19.

    Speijer, D., Lukeš, J. & Eliáš, M. Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proc. Natl. Acad. Sci. USA 112, 8827–8834 (2015).

  20. 20.

    Yubuki, N. & Leander, B. S. Evolution of microtubule organizing centers across the tree of eukaryotes. Plant J. 75, 230–244 (2013).

  21. 21.

    Richards, T. A. & Cavalier-Smith, T. Myosin domain evolution and the primary divergence of eukaryotes. Nature 436, 1113–1118 (2005).

  22. 22.

    Aravind, L., Burroughs, A. M., Zhang, D. & Iyer, L. M. Protein and DNA modifications: evolutionary imprints of bacterial biochemical diversification and geochemistry on the provenance of eukaryotic epigenetics. Cold Spring Harb. Perspect. Biol. 6, a016063 (2014).

  23. 23.

    Eme, L., Sharpe, S. C., Brown, M. W. & Roger, A. J. On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb. Perspect. Biol. 6, a016139 (2014).

  24. 24.

    Poole, A. M. & Gribaldo, S. Eukaryotic origins: how and when was the mitochondrion acquired? Cold Spring Harb. Perspect. Biol. 6, a015990 (2014).

  25. 25.

    van Hooff, J. J., Tromer, E., van Wijk, L. M., Snel, B. & Kops, G. J. Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. EMBO Rep. 18, 1559–1571 (2017).

  26. 26.

    López-García, P. & Moreira, D. Open questions on the origin of eukaryotes. Trends Ecol. Evol. 30, 697–708 (2015).

  27. 27.

    He, D. et al. An alternative root for the eukaryote tree of life. Curr. Biol. 24, 465–470 (2014).

  28. 28.

    Doolittle, W. F. The practice of classification and the theory of evolution, and what the demise of Charles Darwin’s tree of life hypothesis means for both of them. Phil. Trans. R. Soc. Lond. B 364, 2221–2228 (2009).

  29. 29.

    Vetsigian, K., Woese, C. & Goldenfeld, N. Collective evolution and the genetic code. Proc. Natl. Acad. Sci. USA 103, 10696–10701 (2006).

  30. 30.

    Lerat, E., Daubin, V. & Moran, N. A. From gene trees to organismal phylogeny in prokaryotes: the case of the γ-Proteobacteria. PLoS Biol. 1, e19 (2003).

  31. 31.

    Lewontin, R. C. The units of selection. Annu. Rev. Ecol. Evol. Syst. 1, 1–18 (1970).

  32. 32.

    Song, G. et al. AGAPE (Automated Genome Analysis PipelinE) for pan-genome analysis of Saccharomyces cerevisiae. PLoS One 10, e0120671 (2015).

  33. 33.

    Read, B. A. et al. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499, 209–213 (2013).

  34. 34.

    Golicz, A. A., Batley, J. & Edwards, D. Towards plant pangenomics. Plant Biotechnol. J. 14, 1099–1105 (2016).

  35. 35.

    Plissonneau, C., Hartmann, F. E. & Croll, D. Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome. BMC Biol. 16, 5 (2018).

  36. 36.

    Bendif, M. et al. Recent reticulate evolution in the ecologically dominant lineage of coccolithophores. Front. Microbiol. 7, 784 (2016).

  37. 37.

    Woese, C. The universal ancestor. Proc. Natl. Acad. Sci. USA 95, 6854–6859 (1998).

  38. 38.

    López-García, P. & Moreira, D. Metabolic symbiosis at the origin of eukaryotes. Trends Biochem. Sci. 24, 88–93 (1999).

  39. 39.

    Bell, P. J. The viral eukaryogenesis hypothesis: a key role for viruses in the emergence of eukaryotes from a prokaryotic world environment. Ann. NY Acad. Sci. 1178, 91–105 (2009).

  40. 40.

    Booth, A. & Doolittle, W. F. Eukaryogenesis, how special really? Proc. Natl. Acad. Sci. USA 112, 10278–10285 (2015).

  41. 41.

    Pittis, A. A. & Gabaldón, T. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 531, 101–104 (2016).

  42. 42.

    Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987).

  43. 43.

    Szathmáry, E. & Smith, J. M. The major evolutionary transitions. Nature 374, 227–232 (1995).

  44. 44.

    Horn, M. & Wagner, M. Bacterial endosymbionts of free-living amoebae. J. Eukaryot. Microbiol. 51, 509–514 (2004).

  45. 45.

    Iida, T., Ohkuma, M., Ohtoko, K. & Kudo, T. Symbiotic spirochetes in the termite hindgut: phylogenetic identification of ectosymbiotic spirochetes of oxymonad protists. FEMS Microbiol. Ecol. 34, 17–26 (2000).

  46. 46.

    Brito, P. H. et al. Genetic competence drives genome diversity in Bacillus subtilis. Genome Biol. Evol. 10, 108–124 (2018).

  47. 47.

    von Dassow, P. et al. Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton. ISME J. 9, 1365–1377 (2015).

  48. 48.

    McInerney, J. O., McNally, A. & O’Connell, M. J. Why prokaryotes have pangenomes. Nat. Microbiol. 2, 17040 (2017).

  49. 49.

    McInerney, J., Pisani, D. & O’Connell, M. J. The ring of life hypothesis for eukaryote origins is supported by multiple kinds of data. Phil. Trans. R. Soc. Lond. B 370, 20140323 (2015).

  50. 50.

    Andreani, N. A., Hesse, E. & Vos, M. Prokaryote genome fluidity is dependent on effective population size. ISME J. 11, 1719–1721 (2017).

  51. 51.

    Vos, M.. & Eyre-Walker, A. Are pangenomes adaptive or not? Nat. Microbiol. 2, 1576 (2017).

  52. 52.

    Shapiro, B. J. The population genetics of pangenomes. Nat. Microbiol. 2, 1574 (2017).

  53. 53.

    Rocha, E. P. C. Neutral theory, microbial practice: challenges in bacterial population genetics. Mol. Biol. Evol. 35, 1338–1347 (2018).

  54. 54.

    Sung, W., Ackerman, M. S., Miller, S. F., Doak, T. G. & Lynch, M. Drift-barrier hypothesis and mutation-rate evolution. Proc. Natl. Acad. Sci. USA 109, 18488–18492 (2012).

  55. 55.

    Lang, B. F. & Burger, G. Chapter one - mitochondrial and eukaryotic origins: a critical review. Adv. Bot. Res. 63, 1–20 (2012).

  56. 56.

    Zmasek, C. M. & Godzik, A. Strong functional patterns in the evolution of eukaryotic genomes revealed by the reconstruction of ancestral protein domain repertoires. Genome Biol. 12, R4 (2011).

  57. 57.

    Gabaldón, T. & Huynen, M. A. Reconstruction of the proto-mitochondrial metabolism. Science 301, 609 (2003).

  58. 58.

    Sun, S., Xiao, J., Zhang, H. & Zhang, Z. Pangenome evidence for higher codon usage bias and stronger translational selection in core genes of Escherichia coli. Front. Microbiol. 7, 1180 (2016).

  59. 59.

    Bohlin, J., Eldholm, V., Pettersson, J. H., Brynildsrud, O. & Snipen, L. The nucleotide composition of microbial genomes indicates differential patterns of selection on core and accessory genomes. BMC Genomics 18, 151 (2017).

  60. 60.

    Castillo-Ramírez, S. et al. The impact of recombination on dN/dS within recently emerged bacterial clones. PLoS Pathog. 7, e1002129 (2011).

  61. 61.

    Gordienko, E. N., Kazanov, M. D. & Gelfand, M. S. Evolution of pan-genomes of Escherichia coli, Shigella spp., and Salmonella enterica. J. Bacteriol. 195, 2786–2792 (2013).

  62. 62.

    Boto, L. Are there really too many Eukaryote LGTs? A reply to William Martin. BioEssays 40, 1800001 (2018).

  63. 63.

    Leger, M. M., Eme, L., Stairs, C. W. & Roger, A. J. Demystifying eukaryote lateral gene transfer (response to Martin 2017 DOI: 10.1002/bies.201700115). BioEssays 40, e1700242 (2018).

  64. 64.

    Martin, W. F. Too much eukaryote LGT. BioEssays 39, 1700115 (2017).

  65. 65.

    Thiergart, T., Landan, G., Schenk, M., Dagan, T. & Martin, W. F. An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin. Genome Biol. Evol. 4, 466–485 (2012).

  66. 66.

    Ku, C. et al. Endosymbiotic gene transfer from prokaryotic pangenomes: inherited chimerism in eukaryotes. Proc. Natl. Acad. Sci. USA 112, 10139–10146 (2015).

  67. 67.

    Koonin, E. V. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat. Rev. Microbiol. 1, 127–136 (2003).

  68. 68.

    Mushegian, A. Gene content of LUCA, the last universal common ancestor. Front. Biosci. 13, 4657–4666 (2008).

  69. 69.

    Glansdorff, N., Xu, Y. & Labedan, B. The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol. Direct 3, 29 (2008).

  70. 70.

    Forterre, P. In a world of microbes, where should microbiology stand? Res. Microbiol. 159, 74–80 (2008).

  71. 71.

    Woese, C. R. On the evolution of cells. Proc. Natl. Acad. Sci. USA 99, 8742–8747 (2002).

  72. 72.

    Gogarten, J. P. & Olendzenski, L. Orthologs, paralogs and genome comparisons. Curr. Opin. Genet. Dev. 9, 630–636 (1999).

  73. 73.

    Doolittle, W. F. Uprooting the tree of life. Sci. Am. 282, 90–95 (2000).

Download references

Acknowledgements

We gratefully acknowledge S. Muñoz-Gómez for several thoughtful discussions and the inspiration for Fig. 2. We also thank W. F. Doolittle and A. J. Roger for insightful comments on earlier drafts of this paper. For views on the conceptual continuum of LECA, we are grateful to anonymous attendees at the 2017 EMBO workshop on Comparative Genomics of Eukaryotic Microbes, and members of the Dalhousie University Centre for Comparative Genomics and Evolutionary Bioinformatics. M.A.O.’s research is supported by the French government via the ‘Investments for the future’ Programme, IdEx Bordeaux (ANR-10-IDEX-03-02). M.M.L. is supported by a Marie Skłodowska-Curie Individual Fellowship under the EU Framework Programme for Research and Innovation Horizon 2020 (Project ID 747789). J.G.W. was supported by a College for Life Sciences Fellowship at the Wissenschaftskolleg zu Berlin. I.R.-T. was supported by a European Research Council Consolidator Grant (ERC-2012-Co -616960) grant and funding (BFU2017-90114-P) from Ministerio de Economía y Competitividad (MINECO), Agencia Estatal de Investigación (AEI), and Fondo Europeo de Desarrollo Regional (FEDER).

Author information

Author notes

  1. These authors contributed equally: Maureen A. O’Malley, Michelle M. Leger.

Affiliations

  1. LaBRI, University of Bordeaux, Talence, France

    • Maureen A. O’Malley
  2. HPS, University of Sydney, Sydney, New South Wales, Australia

    • Maureen A. O’Malley
  3. Institute of Evolutionary Biology, UPF-CSIC Barcelona, Barcelona, Spain

    • Michelle M. Leger
    •  & Iñaki Ruiz-Trillo
  4. Wissenschaftskolleg zu Berlin, Berlin, Germany

    • Jeremy G. Wideman
  5. Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada

    • Jeremy G. Wideman
  6. Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain

    • Iñaki Ruiz-Trillo
  7. ICREA, Barcelona, Spain

    • Iñaki Ruiz-Trillo

Authors

  1. Search for Maureen A. O’Malley in:

  2. Search for Michelle M. Leger in:

  3. Search for Jeremy G. Wideman in:

  4. Search for Iñaki Ruiz-Trillo in:

Contributions

All authors jointly conceived and wrote the paper.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Maureen A. O’Malley or Iñaki Ruiz-Trillo.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41559-019-0796-3