Concepts of the last eukaryotic common ancestor

Abstract

Insight into the last eukaryotic common ancestor (LECA) is central to any phylogeny-based reconstruction of early eukaryotic evolution. Increasing amounts of data enable such reconstructions, without necessarily providing further insight into what LECA actually was. We consider four possible concepts of LECA: an abstract phylogenetic state, a single cell, a population, and a consortium of organisms. We argue that the view most realistically underlying work in the field is that of LECA as a population. Drawing on recent findings of genomically heterogeneous populations in eukaryotes (‘pangenomes’), we examine the evolutionary implications of a pangenomic LECA population. For instance, how does this concept affect standard expectations about the ecology, geography, fitness, and diversification of LECA? Does it affect evolutionary interpretations of LECA’s cellular functions? Finally, we examine whether this novel pangenomic concept of LECA has implications for phylogenetic reconstructions of early eukaryote evolution. Our aim is to add to the conceptual toolkit for developing theories of LECA and interpreting genomic datasets.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2

References

  1. 1.

    Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol.27, R1177–R1192 (2017).

    CAS  PubMed  Google Scholar 

  2. 2.

    Makarova, K. S., Wolf, Y. I., Mekhedov, S. L., Mirkin, B. G. & Koonin, E. V. Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Res.33, 4626–4638 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol.15, 711–723 (2017).

    CAS  PubMed  Google Scholar 

  4. 4.

    Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature541, 353–358 (2017).

    CAS  PubMed  Google Scholar 

  5. 5.

    Field, M. C. & Dacks, J. B. First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Curr. Opin. Cell Biol.21, 4–13 (2009).

    CAS  PubMed  Google Scholar 

  6. 6.

    Mast, F. D., Barlow, L. D., Rachubinski, R. A. & Dacks, J. B. Evolutionary mechanisms for establishing eukaryotic cellular complexity. Trends Cell Biol.24, 435–442 (2014).

    CAS  PubMed  Google Scholar 

  7. 7.

    Koonin, E. V. The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol.11, 209 (2010).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Butterfield, N. J. Early evolution of the Eukaryota. Front. Palaeontol.58, 5–17 (2015).

    Google Scholar 

  9. 9.

    Poole, A. M. & Neumann, N. Reconciling an archaeal origin of eukaryotes with engulfment: a biologically plausible update of the Eocyte hypothesis. Res. Microbiol.162, 71–76 (2011).

    PubMed  Google Scholar 

  10. 10.

    Margulis, L., Chapman, M., Guerrero, R. & Hall, J. The last eukaryotic common ancestor (LECA): acquisition of cytoskeletal motility from aerotolerant spirochetes in the Proterozoic Eon. Proc. Natl. Acad. Sci. USA103, 13080–13085 (2006).

    CAS  PubMed  Google Scholar 

  11. 11.

    Klöpper, T. H., Kienle, N., Fasshauer, D. & Munro, S. Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis. BMC Biol.10, 71 (2012).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Vaškovičová, K. et al. Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life. Biol. Direct8, 8 (2013).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Lane, N. Energetics and genetics across the prokaryote-eukaryote divide. Biol. Direct6, 35 (2011).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Moreira, D. & López-García, P. Symbiosis between methanogenic archaea and delta-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J. Mol. Evol.47, 517–530 (1998).

    CAS  PubMed  Google Scholar 

  15. 15.

    Koumandou, V. L. et al. Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit. Rev. Biochem. Mol. Biol.48, 373–396 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Hampl, V. et al. Genetic evidence for a mitochondriate ancestry in the ‘amitochondriate’ flagellate Trimastix pyriformis. PLoS One3, e1383 (2008).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Rivera, M. C., Jain, R., Moore, J. E. & Lake, J. A. Genomic evidence for two functionally distinct gene classes. Proc. Natl. Acad. Sci. USA95, 6239–6244 (1998).

    CAS  PubMed  Google Scholar 

  18. 18.

    Dacks, J. & Roger, A. J. The first sexual lineage and the relevance of facultative sex. J. Mol. Evol.48, 779–783 (1999).

    CAS  PubMed  Google Scholar 

  19. 19.

    Speijer, D., Lukeš, J. & Eliáš, M. Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proc. Natl. Acad. Sci. USA112, 8827–8834 (2015).

    CAS  PubMed  Google Scholar 

  20. 20.

    Yubuki, N. & Leander, B. S. Evolution of microtubule organizing centers across the tree of eukaryotes. Plant J.75, 230–244 (2013).

    CAS  PubMed  Google Scholar 

  21. 21.

    Richards, T. A. & Cavalier-Smith, T. Myosin domain evolution and the primary divergence of eukaryotes. Nature436, 1113–1118 (2005).

    CAS  PubMed  Google Scholar 

  22. 22.

    Aravind, L., Burroughs, A. M., Zhang, D. & Iyer, L. M. Protein and DNA modifications: evolutionary imprints of bacterial biochemical diversification and geochemistry on the provenance of eukaryotic epigenetics. Cold Spring Harb. Perspect. Biol.6, a016063 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Eme, L., Sharpe, S. C., Brown, M. W. & Roger, A. J. On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb. Perspect. Biol.6, a016139 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Poole, A. M. & Gribaldo, S. Eukaryotic origins: how and when was the mitochondrion acquired? Cold Spring Harb. Perspect. Biol.6, a015990 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    van Hooff, J. J., Tromer, E., van Wijk, L. M., Snel, B. & Kops, G. J. Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. EMBO Rep.18, 1559–1571 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    López-García, P. & Moreira, D. Open questions on the origin of eukaryotes. Trends Ecol. Evol.30, 697–708 (2015).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    He, D. et al. An alternative root for the eukaryote tree of life. Curr. Biol.24, 465–470 (2014).

    CAS  PubMed  Google Scholar 

  28. 28.

    Doolittle, W. F. The practice of classification and the theory of evolution, and what the demise of Charles Darwin’s tree of life hypothesis means for both of them. Phil. Trans. R. Soc. Lond. B364, 2221–2228 (2009).

    Google Scholar 

  29. 29.

    Vetsigian, K., Woese, C. & Goldenfeld, N. Collective evolution and the genetic code. Proc. Natl. Acad. Sci. USA103, 10696–10701 (2006).

    CAS  PubMed  Google Scholar 

  30. 30.

    Lerat, E., Daubin, V. & Moran, N. A. From gene trees to organismal phylogeny in prokaryotes: the case of the γ-Proteobacteria. PLoS Biol.1, e19 (2003).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Lewontin, R. C. The units of selection. Annu. Rev. Ecol. Evol. Syst.1, 1–18 (1970).

    Google Scholar 

  32. 32.

    Song, G. et al. AGAPE (Automated Genome Analysis PipelinE) for pan-genome analysis of Saccharomyces cerevisiae. PLoS One10, e0120671 (2015).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Read, B. A. et al. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature499, 209–213 (2013).

    CAS  PubMed  Google Scholar 

  34. 34.

    Golicz, A. A., Batley, J. & Edwards, D. Towards plant pangenomics. Plant Biotechnol. J.14, 1099–1105 (2016).

    PubMed  Google Scholar 

  35. 35.

    Plissonneau, C., Hartmann, F. E. & Croll, D. Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome. BMC Biol.16, 5 (2018).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Bendif, M. et al. Recent reticulate evolution in the ecologically dominant lineage of coccolithophores. Front. Microbiol.7, 784 (2016).

    PubMed Central  Google Scholar 

  37. 37.

    Woese, C. The universal ancestor. Proc. Natl. Acad. Sci. USA95, 6854–6859 (1998).

    CAS  PubMed  Google Scholar 

  38. 38.

    López-García, P. & Moreira, D. Metabolic symbiosis at the origin of eukaryotes. Trends Biochem. Sci.24, 88–93 (1999).

    PubMed  Google Scholar 

  39. 39.

    Bell, P. J. The viral eukaryogenesis hypothesis: a key role for viruses in the emergence of eukaryotes from a prokaryotic world environment. Ann. NY Acad. Sci.1178, 91–105 (2009).

    CAS  PubMed  Google Scholar 

  40. 40.

    Booth, A. & Doolittle, W. F. Eukaryogenesis, how special really? Proc. Natl. Acad. Sci. USA112, 10278–10285 (2015).

    CAS  PubMed  Google Scholar 

  41. 41.

    Pittis, A. A. & Gabaldón, T. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature531, 101–104 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Woese, C. R. Bacterial evolution. Microbiol. Rev.51, 221–271 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Szathmáry, E. & Smith, J. M. The major evolutionary transitions. Nature374, 227–232 (1995).

    PubMed  Google Scholar 

  44. 44.

    Horn, M. & Wagner, M. Bacterial endosymbionts of free-living amoebae. J. Eukaryot. Microbiol.51, 509–514 (2004).

    PubMed  Google Scholar 

  45. 45.

    Iida, T., Ohkuma, M., Ohtoko, K. & Kudo, T. Symbiotic spirochetes in the termite hindgut: phylogenetic identification of ectosymbiotic spirochetes of oxymonad protists. FEMS Microbiol. Ecol.34, 17–26 (2000).

    CAS  PubMed  Google Scholar 

  46. 46.

    Brito, P. H. et al. Genetic competence drives genome diversity in Bacillus subtilis. Genome Biol. Evol.10, 108–124 (2018).

    CAS  PubMed  Google Scholar 

  47. 47.

    von Dassow, P. et al. Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton. ISME J.9, 1365–1377 (2015).

    Google Scholar 

  48. 48.

    McInerney, J. O., McNally, A. & O’Connell, M. J. Why prokaryotes have pangenomes. Nat. Microbiol.2, 17040 (2017).

    CAS  PubMed  Google Scholar 

  49. 49.

    McInerney, J., Pisani, D. & O’Connell, M. J. The ring of life hypothesis for eukaryote origins is supported by multiple kinds of data. Phil. Trans. R. Soc. Lond. B370, 20140323 (2015).

    Google Scholar 

  50. 50.

    Andreani, N. A., Hesse, E. & Vos, M. Prokaryote genome fluidity is dependent on effective population size. ISME J.11, 1719–1721 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Vos, M.. & Eyre-Walker, A. Are pangenomes adaptive or not? Nat. Microbiol.2, 1576 (2017).

    CAS  PubMed  Google Scholar 

  52. 52.

    Shapiro, B. J. The population genetics of pangenomes. Nat. Microbiol.2, 1574 (2017).

    CAS  PubMed  Google Scholar 

  53. 53.

    Rocha, E. P. C. Neutral theory, microbial practice: challenges in bacterial population genetics. Mol. Biol. Evol.35, 1338–1347 (2018).

    CAS  PubMed  Google Scholar 

  54. 54.

    Sung, W., Ackerman, M. S., Miller, S. F., Doak, T. G. & Lynch, M. Drift-barrier hypothesis and mutation-rate evolution. Proc. Natl. Acad. Sci. USA109, 18488–18492 (2012).

    CAS  PubMed  Google Scholar 

  55. 55.

    Lang, B. F. & Burger, G. Chapter one - mitochondrial and eukaryotic origins: a critical review. Adv. Bot. Res.63, 1–20 (2012).

    CAS  Google Scholar 

  56. 56.

    Zmasek, C. M. & Godzik, A. Strong functional patterns in the evolution of eukaryotic genomes revealed by the reconstruction of ancestral protein domain repertoires. Genome Biol.12, R4 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Gabaldón, T. & Huynen, M. A. Reconstruction of the proto-mitochondrial metabolism. Science301, 609 (2003).

    PubMed  Google Scholar 

  58. 58.

    Sun, S., Xiao, J., Zhang, H. & Zhang, Z. Pangenome evidence for higher codon usage bias and stronger translational selection in core genes of Escherichia coli. Front. Microbiol.7, 1180 (2016).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Bohlin, J., Eldholm, V., Pettersson, J. H., Brynildsrud, O. & Snipen, L. The nucleotide composition of microbial genomes indicates differential patterns of selection on core and accessory genomes. BMC Genomics18, 151 (2017).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Castillo-Ramírez, S. et al. The impact of recombination on dN/dS within recently emerged bacterial clones. PLoS Pathog.7, e1002129 (2011).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Gordienko, E. N., Kazanov, M. D. & Gelfand, M. S. Evolution of pan-genomes of Escherichia coli, Shigella spp., and Salmonella enterica. J. Bacteriol.195, 2786–2792 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Boto, L. Are there really too many Eukaryote LGTs? A reply to William Martin. BioEssays40, 1800001 (2018).

    Google Scholar 

  63. 63.

    Leger, M. M., Eme, L., Stairs, C. W. & Roger, A. J. Demystifying eukaryote lateral gene transfer (response to Martin 2017 DOI: 10.1002/bies.201700115). BioEssays40, e1700242 (2018).

    PubMed  Google Scholar 

  64. 64.

    Martin, W. F. Too much eukaryote LGT. BioEssays39, 1700115 (2017).

    Google Scholar 

  65. 65.

    Thiergart, T., Landan, G., Schenk, M., Dagan, T. & Martin, W. F. An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin. Genome Biol. Evol.4, 466–485 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Ku, C. et al. Endosymbiotic gene transfer from prokaryotic pangenomes: inherited chimerism in eukaryotes. Proc. Natl. Acad. Sci. USA112, 10139–10146 (2015).

    CAS  PubMed  Google Scholar 

  67. 67.

    Koonin, E. V. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat. Rev. Microbiol.1, 127–136 (2003).

    CAS  PubMed  Google Scholar 

  68. 68.

    Mushegian, A. Gene content of LUCA, the last universal common ancestor. Front. Biosci.13, 4657–4666 (2008).

    CAS  PubMed  Google Scholar 

  69. 69.

    Glansdorff, N., Xu, Y. & Labedan, B. The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol. Direct3, 29 (2008).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Forterre, P. In a world of microbes, where should microbiology stand? Res. Microbiol.159, 74–80 (2008).

    CAS  PubMed  Google Scholar 

  71. 71.

    Woese, C. R. On the evolution of cells. Proc. Natl. Acad. Sci. USA99, 8742–8747 (2002).

    CAS  PubMed  Google Scholar 

  72. 72.

    Gogarten, J. P. & Olendzenski, L. Orthologs, paralogs and genome comparisons. Curr. Opin. Genet. Dev.9, 630–636 (1999).

    CAS  PubMed  Google Scholar 

  73. 73.

    Doolittle, W. F. Uprooting the tree of life. Sci. Am.282, 90–95 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge S. Muñoz-Gómez for several thoughtful discussions and the inspiration for Fig. 2. We also thank W. F. Doolittle and A. J. Roger for insightful comments on earlier drafts of this paper. For views on the conceptual continuum of LECA, we are grateful to anonymous attendees at the 2017 EMBO workshop on Comparative Genomics of Eukaryotic Microbes, and members of the Dalhousie University Centre for Comparative Genomics and Evolutionary Bioinformatics. M.A.O.’s research is supported by the French government via the ‘Investments for the future’ Programme, IdEx Bordeaux (ANR-10-IDEX-03-02). M.M.L. is supported by a Marie Skłodowska-Curie Individual Fellowship under the EU Framework Programme for Research and Innovation Horizon 2020 (Project ID 747789). J.G.W. was supported by a College for Life Sciences Fellowship at the Wissenschaftskolleg zu Berlin. I.R.-T. was supported by a European Research Council Consolidator Grant (ERC-2012-Co -616960) grant and funding (BFU2017-90114-P) from Ministerio de Economía y Competitividad (MINECO), Agencia Estatal de Investigación (AEI), and Fondo Europeo de Desarrollo Regional (FEDER).

Author information

Affiliations

Authors

Contributions

All authors jointly conceived and wrote the paper.

Corresponding authors

Correspondence to Maureen A. O’Malley or Iñaki Ruiz-Trillo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

O’Malley, M.A., Leger, M.M., Wideman, J.G. et al. Concepts of the last eukaryotic common ancestor. Nat Ecol Evol 3, 338–344 (2019). https://doi.org/10.1038/s41559-019-0796-3

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing