The predictability of ecological stability in a noisy world


Random environmental variation, or stochasticity, is a key determinant of ecological dynamics. While we have some appreciation of how environmental stochasticity can moderate the variability and persistence of communities, we know little about its implications for the nature and predictability of ecological responses to large perturbations. Here, we show that shifts in the temporal autocorrelation (colour) of environmental noise provoke trade-offs in ecological stability across a wide range of different food-web structures by stabilizing dynamics in some dimensions, while simultaneously destabilizing them in others. Specifically, increasingly positive autocorrelation (reddening) of environmental noise increases resilience by hastening the recovery of food webs following a large perturbation, but reduces their resistance to perturbation and increases their temporal variability (reduces biomass stability). In contrast, all stability dimensions become less predictable, showing increased variability around the mean response, as environmental noise reddens. Moreover, we found environmental reddening to be a considerably more important determinant of stability than intrinsic food-web characteristics. These findings reveal the fundamental and dominant role played by environmental stochasticity in determining the dynamics and stability of ecosystems, and extend our understanding of how the multiple dimensions of stability relate to each other beyond simple white noise environments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Quantification of ecological stability dimensions.
Fig. 2: Stability responses of a single food-chain community to replicate regimes of environmental stochasticity along a gradient in temporal autocorrelation.
Fig. 3: General stability responses to changes in environmental autocorrelation across a diverse range of food-web modules.
Fig. 4: General stability responses to changes in the correlation of species responses to environmental fluctuations across a diverse range of food-web modules.
Fig. 5: Determinants of ecological stability in stochastic environments.

Data availability

All core data, including the constructed communities, time series of environmental stochasticity and ecological stabilities, and R codes for generating the results and figures of this paper, are available at


  1. 1.

    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013).

    CAS  PubMed  Google Scholar 

  3. 3.

    Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B. & Wood, S. Making mistakes when predicting shifts in species range in response to global warming. Nature 391, 783–786 (1998).

    CAS  PubMed  Google Scholar 

  4. 4.

    Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).

    PubMed  Google Scholar 

  5. 5.

    Petchey, O. L. et al. The ecological forecast horizon, and examples of its uses and determinants. Ecol. Lett. 18, 597–611 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).

    PubMed  Google Scholar 

  7. 7.

    Donohue, I. et al. Loss of predator species, not intermediate consumers, triggers rapid and dramatic extinction cascades. Glob. Change Biol. 23, 2962–2972 (2017).

    Google Scholar 

  8. 8.

    Thompson, R. M., Beardall, J., Beringer, J., Grace, M. & Sardina, P. Means and extremes: building variability into community-level climate change experiments. Ecol. Lett. 16, 799–806 (2013).

    PubMed  Google Scholar 

  9. 9.

    Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).

    PubMed  Google Scholar 

  10. 10.

    Vellend, M. The Theory of Ecological Communities (Princeton Univ. Press, Princeton, NJ, USA, 2016).

  11. 11.

    Boettiger, C. From noise to knowledge: how randomness generates novel phenomena and reveals information. Ecol. Lett. 21, 1255–1267 (2018).

    PubMed  Google Scholar 

  12. 12.

    Halley, J. M. Ecology, evolution and 1/f-noise. Trends Ecol. Evol. 11, 33–37 (1996).

    CAS  PubMed  Google Scholar 

  13. 13.

    Ruokolainen, L., Linden, A., Kaitala, V. & Fowler, M. S. Ecological and evolutionary dynamics under coloured environmental variation. Trends Ecol. Evol. 24, 555–563 (2009).

    PubMed  Google Scholar 

  14. 14.

    Vasseur, D. A. & Yodzis, P. The color of environmental noise. Ecology 85, 1146–1152 (2004).

    Google Scholar 

  15. 15.

    Easterling, D. R. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074 (2000).

    CAS  PubMed  Google Scholar 

  16. 16.

    Jentsch, A., Kreyling, J., Boettcher-Treschkow, J. & Beierkuhnlein, C. Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species. Glob. Change Biol. 15, 837–849 (2009).

    Google Scholar 

  17. 17.

    Kayler, Z. E. et al. Experiments to confront the environmental extremes of climate change. Front. Ecol. Environ. 13, 219–225 (2015).

    Google Scholar 

  18. 18.

    Kuparinen, A., Keith, D. M. & Hutchings, J. A. Increased environmentally driven recruitment variability decreases resilience to fishing and increases uncertainty of recovery. ICES J. Mar. Sci. 71, 1507–1514 (2014).

    Google Scholar 

  19. 19.

    Crone, E. E. Contrasting effects of spatial heterogeneity and environmental stochasticity on population dynamics of a perennial wildflower. J. Ecol. 104, 281–291 (2016).

    Google Scholar 

  20. 20.

    Fowler, M. S. & Ruokolainen, L. Colonization, covariance and colour: environmental and ecological drivers of diversity–stability relationships. J. Theor. Biol. 324, 32–41 (2013).

    PubMed  Google Scholar 

  21. 21.

    Ruokolainen, L., Ranta, E., Kaitala, V. & Fowler, M. S. Community stability under different correlation structures of species’ environmental responses. J. Theor. Biol. 261, 379–387 (2009).

    PubMed  Google Scholar 

  22. 22.

    Donohue, I. et al. On the dimensionality of ecological stability. Ecol. Lett. 16, 421–429 (2013).

    PubMed  Google Scholar 

  23. 23.

    Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).

    Google Scholar 

  24. 24.

    Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).

    CAS  PubMed  Google Scholar 

  25. 25.

    May, R. M. Stability and Complexity in Model Ecosystems (Princeton Univ. Press, Princeton, NJ, USA, 1973).

  26. 26.

    Sabo, J. L. & Post, D. M. Quantifying periodic, stochastic, and catastrophic environmental variation. Ecol. Monogr. 78, 19–40 (2008).

    Google Scholar 

  27. 27.

    Pimm, S. L. & Lawton, J. H. Number of trophic levels in ecological communities. Nature 268, 329–331 (1977).

    Google Scholar 

  28. 28.

    Pimm, S. L. & Lawton, J. H. On feeding on more than one trophic level. Nature 275, 542–544 (1978).

    Google Scholar 

  29. 29.

    Petchey, O. L., Eklof, A., Borrvall, C. & Ebenman, B. Trophically unique species are vulnerable to cascading extinction. Am. Nat. 171, 568–579 (2008).

    PubMed  Google Scholar 

  30. 30.

    Ruokolainen, L. & Fowler, M. S. Community extinction patterns in coloured environments. Proc. R. Soc. B 275, 1775–1783 (2008).

    PubMed  Google Scholar 

  31. 31.

    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    CAS  PubMed  Google Scholar 

  32. 32.

    O’Connor, N. E., Emmerson, M. C., Crowe, T. P. & Donohue, I. Distinguishing between direct and indirect effects of predators in complex ecosystems. J. Anim. Ecol. 82, 438–448 (2013).

    PubMed  Google Scholar 

  33. 33.

    White, L., Donohue, I., Emmerson, M. C. & O’Connor, N. E. Combined effects of warming and nutrients on marine communities are moderated by predators and vary across functional groups. Glob. Change Biol. 24, 5853–5866 (2018).

    Google Scholar 

  34. 34.

    Bascompte, J. & Melian, C. J. Simple trophic modules for complex food webs. Ecology 86, 2868–2873 (2005).

    Google Scholar 

  35. 35.

    Kondoh, M. Building trophic modules into a persistent food web. Proc. Natl Acad. Sci. USA 105, 16631–16635 (2008).

    CAS  PubMed  Google Scholar 

  36. 36.

    Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).

    CAS  PubMed  Google Scholar 

  37. 37.

    Clark, J. S. Uncertainty and variability in demography and population growth: a hierarchical approach. Ecology 84, 1370–1381 (2003).

    Google Scholar 

  38. 38.

    Clark, J. S. Individuals and the variation needed for high species diversity in forest trees. Science 327, 1129–1132 (2010).

    CAS  PubMed  Google Scholar 

  39. 39.

    Laakso, J., Kaitala, V. & Ranta, E. Non-linear biological responses to environmental noise affect population extinction risk. Oikos 104, 142–148 (2004).

    Google Scholar 

  40. 40.

    Ripa, J. & Heino, M. Linear analysis solves two puzzles in population dynamics: the route to extinction and extinction in coloured environments. Ecol. Lett. 2, 219–222 (1999).

    Google Scholar 

  41. 41.

    Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).

    PubMed  Google Scholar 

  42. 42.

    Tilman, D. Biodiversity: population versus ecosystem stability. Ecology 77, 350–363 (1996).

    Google Scholar 

  43. 43.

    Wang, S. P. & Loreau, M. Biodiversity and ecosystem stability across scales in metacommunities. Ecol. Lett. 19, 510–518 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Ives, A. R., Gross, K. & Klug, J. L. Stability and variability in competitive communities. Science 286, 542–544 (1999).

    CAS  PubMed  Google Scholar 

  45. 45.

    Kalinkat, G. et al. Body masses, functional responses and predator–prey stability. Ecol. Lett. 16, 1126–1134 (2013).

    PubMed  Google Scholar 

  46. 46.

    Kaneryd, L. et al. Species-rich ecosystems are vulnerable to cascading extinctions in an increasingly variable world. Ecol. Evol. 2, 858–874 (2012).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Berlow, E. L. et al. Simple prediction of interaction strengths in complex food webs. Proc. Natl Acad. Sci. USA 106, 187–191 (2009).

    CAS  PubMed  Google Scholar 

  48. 48.

    Van der Bolt, B., van Nes, E. H., Bathiany, S., Vollebregt, M. E. & Scheffer, M. Climate reddening increases the chance of critical transitions. Nat. Clim. Change 8, 478–484 (2018).

    Google Scholar 

  49. 49.

    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    CAS  PubMed  Google Scholar 

  50. 50.

    Greenman, J. V. & Benton, T. G. The amplification of environmental noise in population models: causes and consequences. Am. Nat. 161, 225–239 (2003).

    CAS  PubMed  Google Scholar 

  51. 51.

    Murdoch, W. M., Briggs, C. J. & Nisbet, R. M. Consumer–Resource Dynamics (Princeton Univ. Press, Princeton, NJ, USA, 2003).

  52. 52.

    Mayfield, M. M. & Stouffer, D. B. Higher-order interactions capture unexplained complexity in diverse communities. Nat. Ecol. Evol. 1, 0062 (2017).

    Google Scholar 

  53. 53.

    Cohen, J. E., Jonsson, T. & Carpenter, S. R. Ecological community description using the food web, species abundance, and body size. Proc. Natl Acad. Sci. USA 100, 1781–1786 (2003).

    CAS  PubMed  Google Scholar 

  54. 54.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Google Scholar 

  55. 55.

    Healy, K. et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. B 281, 20140298 (2014).

    PubMed  Google Scholar 

  56. 56.

    Paine, R. T. Food-web analysis through field measurement of per-capita interaction strength. Nature 355, 73–75 (1992).

    Google Scholar 

  57. 57.

    Wootton, J. T. & Emmerson, M. Measurement of interaction strength in nature. Annu. Rev. Ecol. Evol. Syst. 36, 419–444 (2005).

    Google Scholar 

  58. 58.

    Emmerson, M. & Yearsley, J. M. Weak interactions, omnivory and emergent food-web properties. Proc. R. Soc. B 271, 397–405 (2004).

    PubMed  Google Scholar 

  59. 59.

    Gilpin, M. E. Stability of feasible predator–prey systems. Nature 254, 137–139 (1975).

    Google Scholar 

  60. 60.

    Jansen, V. A. A. & Kokkoris, G. D. Complexity and stability revisited. Ecol. Lett. 6, 498–502 (2003).

    Google Scholar 

  61. 61.

    Heino, M., Ripa, J. & Kaitala, V. Extinction risk under coloured environmental noise. Ecography 23, 177–184 (2000).

    Google Scholar 

  62. 62.

    Greenman, J. V. & Benton, T. G. The impact of environmental fluctuations on structured discrete time population models: resonance, synchrony and threshold behaviour. Theor. Popul. Biol. 68, 217–235 (2005).

    CAS  PubMed  Google Scholar 

  63. 63.

    Fowler, M. S. & Ruokolainen, L. Confounding environmental colour and distribution shape leads to underestimation of population extinction risk. PLoS ONE 8, e55855 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Cohen, J. E., Newman, C. M., Cohen, A. E., Petchey, O. L. & Gonzalez, A. Spectral mimicry: a method of synthesizing matching time series with different Fourier spectra. Circ. Syst. Signal Process. 18, 431–442 (1999).

    Google Scholar 

  65. 65.

    Ruokolainen, L., Fowler, M. S. & Ranta, E. Extinctions in competitive communities forced by coloured environmental variation. Oikos 116, 439–448 (2007).

    Google Scholar 

  66. 66.

    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).

  67. 67.

    Soetaert, K., Petzoldt, T. & Setzer, R. W. Solving differential equations in R: package deSolve. J. Stat. Softw. 33, 1–25 (2010).

    Google Scholar 

  68. 68.

    Evans, J. S., Murphy, M. A., Holden, Z. A. & Cushman, S. A. in Predictive Species and Habitat Modeling in Landscape Ecology (eds. Drew, C. A., Wiersma, Y. & Huettmann, F.) 139–159 (Springer-Verlag, New York, 2011).

  69. 69.

    Shi, T. & Horvath, S. Unsupervised learning with random forest predictors. J. Comput. Graph. Stat. 15, 118–138 (2006).

    Google Scholar 

  70. 70.

    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  71. 71.

    Wright, M. N. & Ziegler, A. ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1–17 (2017).

    Google Scholar 

Download references


Q.Y. was funded by a Government of Ireland Postgraduate Scholarship from the Irish Research Council (GOIPG/2013/1474).

Author information




Q.Y., I.D., A.L.J. and M.S.F. designed the research. Q.Y. performed the numerical simulations and analysed the data. Q.Y. and I.D. drafted the text. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Ian Donohue.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Supplementary Figures 1–9

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Fowler, M.S., Jackson, A.L. et al. The predictability of ecological stability in a noisy world. Nat Ecol Evol 3, 251–259 (2019).

Download citation

Further reading