Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Insights from genomes into the evolutionary importance and prevalence of hybridization in nature

Abstract

Hybridization is an evolutionary phenomenon that has fascinated biologists for centuries. Prior to the advent of whole-genome sequencing, it was clear that hybridization had played a role in the evolutionary history of many extant taxa, particularly plants. The extent to which hybridization has contributed to the evolution of Earth’s biodiversity has, however, been the topic of much debate. Analyses of whole genomes are providing further insight into this evolutionary problem. Recent studies have documented ancient hybridization in a diverse array of taxa including mammals, birds, fish, fungi, and insects. Evidence for adaptive introgression is being documented in an increasing number of systems, though demonstrating the adaptive function of introgressed genomic regions remains difficult. And finally, several new homoploid hybrid speciation events have been reported. Here we review the current state of the field and specifically evaluate the additional insights gained from having access to whole-genome data and the challenges that remain with respect to understanding the evolutionary relevance and frequency of ancient hybridization, adaptive introgression, and hybrid speciation in nature.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: There is increasing evidence for widespread ancient hybridization.

Melissa Hoyer (a,b); Croisy/Depositphotos.com (c, human skull); Creativemarc/Depositphotos.com (c, Neanderthal skull); iLexx/Depositphotos.com (d); vvoennyy/Depositphotos.com (e); Pierre Fidenci (f); David Toews (g); Ole Seehausen (h); chrupka/Depositphotos.com (map)

Fig. 2: Adaptive introgression is difficult to demonstrate.
Fig. 3: Hybrid speciation in nature appears to be rare.

K. Thalia Grant and Peter R. Grant (a); iLexx/Depositphotos.com (b)

References

  1. Lotsy, J.P. in Evolution by Means of Hybridization 56–64 (Springer, New York, 1916).

  2. Anderson, E. Introgressive hybridization. Biol. Rev. Camb. Philos. Soc. 28, 280–307 (1953).

    Article  Google Scholar 

  3. Stebbins, G. The role of hybridization in evolution. Proc. Am. Phil. Soc. 103, 231–251 (1959).

    Google Scholar 

  4. Harrison, R. G. Hybrid zones: windows on evolutionary process 7, 69–128 (1990).

    Google Scholar 

  5. Harrison, R. G. & Larson, E. L. Hybridization, introgression, and the nature of species boundaries. J. Hered 105, 795–809 (2014).

    PubMed  Article  Google Scholar 

  6. Gompert, Z., Mandeville, E. G. & Buerkle, C. A. Analysis of population genomic data from hybrid zones. Annu. Rev. Ecol. Evol. Syst. 48, 207–229 (2017).

    Article  Google Scholar 

  7. Abbott, R. J. Plant speciation across environmental gradients and the occurrence and nature of hybrid zones. J. Syst. Evol. 55, 238–258 (2017).

    Article  Google Scholar 

  8. Turner, L. M. & Harr, B. Genome-wide mapping in a house mouse hybrid zone reveals hybrid sterility loci and Dobzhansky–Muller interactions. eLife 3, 02504 (2014).

    Article  Google Scholar 

  9. Taylor, S. A. et al. Climate-mediated movement of an avian hybrid zone. Curr. Biol. 24, 671–676 (2014).

    CAS  PubMed  Article  Google Scholar 

  10. Scordato, E. S. C. et al. Genomic variation across two barn swallow hybrid zones reveals traits associated with divergence in sympatry and allopatry. Mol. Ecol. 26, 5676–5691 (2017).

    PubMed  Article  Google Scholar 

  11. Rafati, N. et al. A genomic map of clinal variation across the European rabbit hybrid zone. Mol. Ecol. 27, 1457–1478 (2018).

    CAS  PubMed  Article  Google Scholar 

  12. Sung, C.-J., Bell, K. L., Nice, C. C. & Martin, N. H. Integrating Bayesian genomic cline analyses and association mapping of morphological and ecological traits to dissect reproductive isolation and introgression in a Louisiana Iris hybrid zone. Mol. Ecol. 27, 959–978 (2018).

    CAS  PubMed  Article  Google Scholar 

  13. Seehausen, O. Hybridization and adaptive radiation. Trends Ecol. Evol. 19, 198–207 (2004).

    PubMed  Article  Google Scholar 

  14. Abbott, R. J., Barton, N. H. & Good, J. M. Genomics of hybridization and its evolutionary consequences. Mol. Ecol. 25, 2325–2332 (2016).

    PubMed  Article  Google Scholar 

  15. Roux, C. et al. Shedding light on the grey zone of speciation along a continuum of genomic divergence. PLoS Biol. 14, e2000234 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. Schumer, M., Rosenthal, G. G. & Andolfatto, P. How common is homoploid hybrid speciation? Evolution 68, 1553–1560 (2014).

    PubMed  Article  Google Scholar 

  17. Rieseberg, L. H. Hybrid origins of plant species. Annu. Rev. Ecol. Syst. 28, 359–389 (1997).

    Article  Google Scholar 

  18. Arnold, M. L. Divergence with genetic exchange. (Oxford University Press, Oxford, UK, 2015).

    Book  Google Scholar 

  19. Grant, V. Plant Speciation. (Columbia University Press, New York, 1971).

    Google Scholar 

  20. Barton, N. H. Does hybridization influence speciation? J. Evol. Biol. 26, 267–269 (2013).

    CAS  PubMed  Article  Google Scholar 

  21. Barton, N. H. The role of hybridization in evolution. Mol. Ecol. 10, 551–568 (2001).

    CAS  PubMed  Article  Google Scholar 

  22. Abbott, R. et al. Hybridization and speciation. J. Evol. Biol. 26, 229–246 (2013).

    CAS  PubMed  Article  Google Scholar 

  23. Mallet, J. Hybrid speciation. Nature 446, 279–283 (2007).

    CAS  PubMed  Article  Google Scholar 

  24. Sankararaman, S. et al. The genomic landscape of Neanderthal ancestry in present-day humans. Nature 507, 354–357 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Dutheil, J. Y., Munch, K., Nam, K., Mailund, T. & Schierup, M. H. Strong selective sweeps on the X chromosome in the human–chimpanzee ancestor explain its low divergence. PLoS Genet. 11, e1005451 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. Dannemann, M., Andrés, A. M. & Kelso, J. Introgression of Neandertal- and Denisovan-like haplotypes contributes to adaptive variation in human toll-like receptors. Am. J. Hum. Genet. 98, 22–33 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Hackinger, S. et al. Wide distribution and altitude correlation of an archaic high-altitude-adaptive EPAS1 haplotype in the Himalayas. Hum. Genet. 135, 393–402 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Simonti, C. N. et al. The phenotypic legacy of admixture between modern humans and Neandertals. Science 351, 737–741 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Palkopoulou, E. et al. A comprehensive genomic history of extinct and living elephants. Proc. Natl. Acad. Sci. USA 115, E2566–E2574 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. Meier, J. I. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8, 14363 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Irisarri, I. et al. Phylogenomics uncovers early hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nat. Commun. 9, 3159 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. Osborne, O. G., Chapman, M. A., Nevado, B. & Filatov, D. A. Maintenance of species boundaries despite ongoing gene flow in ragworts. Genome Biol. Evol. 8, 1038–1047 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Payseur, B. A. & Rieseberg, L. H. A genomic perspective on hybridization and speciation. Mol. Ecol. 25, 2337–2360 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Marcet-Houben, M. & Gabaldón, T. Beyond the whole-genome duplication: phylogenetic evidence for an ancient interspecies hybridization in the Baker’s yeast lineage. PLoS Biol. 13, e1002220 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. Toews, D. P. L. et al. Plumage genes and little else distinguish the genomes of hybridizing warblers. Curr. Biol. 26, 2313–2318 (2016).

    CAS  PubMed  Article  Google Scholar 

  36. Schumer, M. et al. Assortative mating and persistent reproductive isolation in hybrids. Proc. Natl. Acad. Sci. USA 114, 10936–10941 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. Lunt, D. H., Kumar, S., Koutsovoulos, G. & Blaxter, M. L. The complex hybrid origins of the root knot nematodes revealed through comparative genomics. PeerJ 2, e356 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. Lindtke, D., Gompert, Z., Lexer, C. & Buerkle, C. A. Unexpected ancestry of Populus seedlings from a hybrid zone implies a large role for postzygotic selection in the maintenance of species. Mol. Ecol. 23, 4316–4330 (2014).

    PubMed  Article  Google Scholar 

  39. Christe, C. et al. Selection against recombinant hybrids maintains reproductive isolation in hybridizing Populus species despite F1 fertility and recurrent gene flow. Mol. Ecol. 25, 2482–2498 (2016).

    CAS  PubMed  Article  Google Scholar 

  40. Colella, J. P. et al. Whole-genome analysis of Mustela erminea finds that pulsed hybridization impacts evolution at high latitudes. Commun. Biol. 1, 51 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  41. Mandeville, E. G. et al. Inconsistent reproductive isolation revealed by interactions between Catostomus fish species. Evol. Lett. 1, 255–268 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  42. Runemark, A., Fernández, L. P., Eroukhmanoff, F. & Sætre, G.-P. Genomic contingencies and the potential for local adaptation in a hybrid species. Am. Nat. 192, 10–22 (2018).

    PubMed  Article  Google Scholar 

  43. Runemark, A. et al. Variation and constraints in hybrid genome formation. Nat. Ecol. Evol. 2, 549–556 (2018).

    PubMed  Article  Google Scholar 

  44. Harrison, R. G. & Larson, E. L. Heterogeneous genome divergence, differential introgression, and the origin and structure of hybrid zones. Mol. Ecol. 25, 2454–2466 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  45. Luo, X. et al. Chasing ghosts: allopolyploid origin of Oxyria sinensis (Polygonaceae) from its only diploid congener and an unknown ancestor. Mol. Ecol. 26, 3037–3049 (2017).

    CAS  PubMed  Article  Google Scholar 

  46. Sedghifar, A., Brandvain, Y. & Ralph, P. Beyond clines: lineages and haplotype blocks in hybrid zones. Mol. Ecol. 25, 2559–2576 (2016).

    PubMed  Article  Google Scholar 

  47. Smith, J., Payseur, B. & Novembre, J. Expected patterns of local ancestry in a hybrid zone. Preprint at https://doi.org/10.1101/389924 (2018).

  48. Skov, L. et al. Detecting archaic introgression using an unadmixed outgroup. PLoS Genet. 14, e1007641 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. Jones, M. R. & Good, J. M. Targeted capture in evolutionary and ecological genomics. Mol. Ecol. 25, 185–202 (2016).

    PubMed  Article  Google Scholar 

  50. Holmes, M. W. et al. Natural history collections as windows on evolutionary processes. Mol. Ecol. 25, 864–881 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  51. vonHoldt, B. M. et al. Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf. Sci. Adv. 2, e1501714 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  52. Svardal, H. et al. Ancient hybridization and strong adaptation to viruses across African vervet monkey populations. Nat. Genet. 49, 1705–1713 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. de Manuel, M. et al. Chimpanzee genomic diversity reveals ancient admixture with bonobos. Science 354, 477–481 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. Greig, D., Louis, E. J., Borts, R. H. & Travisano, M. Hybrid speciation in experimental populations of yeast. Science 298, 1773–1775 (2002).

    CAS  PubMed  Article  Google Scholar 

  55. Cahill, J. A. et al. Genomic evidence of widespread admixture from polar bears into brown bears during the last ice age. Mol. Biol. Evol. 35, 1120–1129 (2018).

    CAS  PubMed  Article  Google Scholar 

  56. Juric, I., Aeschbacher, S. & Coop, G. The strength of selection against Neanderthal introgression. PLoS Genet. 12, e1006340 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. Harris, K. & Nielsen, R. The genetic cost of Neanderthal introgression. Genetics 203, 881–891 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Schumer, M., Cui, R., Powell, D. L., Rosenthal, G. G. & Andolfatto, P. Ancient hybridization and genomic stabilization in a swordtail fish. Mol. Ecol. 25, 2661–2679 (2016).

    CAS  PubMed  Article  Google Scholar 

  59. Schumer, M. et al. Natural selection interacts with recombination to shape the evolution of hybrid genomes. Science 360, 656–660 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Richards, E. J., Poelstra, J. W. & Martin, C. H. Don’t throw out the sympatric speciation with the crater lake water: fine-scale investigation of introgression provides equivocal support for causal role of secondary gene flow in one of the clearest examples of sympatric speciation. Evol. Lett. 2, 524–540 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  61. Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518, 371–375 (2015).

    CAS  PubMed  Article  Google Scholar 

  62. Berner, D. & Salzburger, W. The genomics of organismal diversification illuminated by adaptive radiations. Trends Genet. 31, 491–499 (2015).

    CAS  PubMed  Article  Google Scholar 

  63. vonHoldt, B. M., Brzeski, K. E., Wilcove, D. S. & Rutledge, L. Y. Redefining the role of admixture and genomics in species conservation. Conserv. Lett. 11, e12371 (2017).

    Article  Google Scholar 

  64. Arnold, M. L. & Kunte, K. Adaptive genetic exchange: a tangled history of admixture and evolutionary innovation. Trends Ecol. Evol. 32, 601–611 (2017).

    PubMed  Article  Google Scholar 

  65. Suarez-Gonzalez, A., Lexer, C. & Cronk, Q. C. B. Adaptive introgression: a plant perspective. Biol. Lett. 14, 20170688 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  66. Hedrick, P. W. Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Mol. Ecol. 22, 4606–4618 (2013).

    PubMed  Article  Google Scholar 

  67. Suarez-Gonzalez, A. et al. Genomic and functional approaches reveal a case of adaptive introgression from Populus balsamifera (balsam poplar) in P. trichocarpa (black cottonwood). Mol. Ecol. 25, 2427–2442 (2016).

    CAS  PubMed  Article  Google Scholar 

  68. Grossen, C., Keller, L., Biebach, I. & Croll, D. Introgression from domestic goat generated variation at the major histocompatibility complex of Alpine ibex. PLoS Genet. 10, e1004438 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. Kim, B. Y., Huber, C. D. & Lohmueller, K. Deleterious variation mimics signatures of genomic incompatibility and adaptive introgression. Preprint at https://doi.org/10.1101/221705 (2017).

  70. Song, Y. et al. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr. Biol. 21, 1296–1301 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Liu, K. J. et al. Interspecific introgressive origin of genomic diversity in the house mouse. Proc. Natl. Acad. Sci. USA 112, 196–201 (2015).

    CAS  PubMed  Article  Google Scholar 

  72. Wallbank, R. W. R. et al. Evolutionary novelty in a butterfly wing pattern through enhancer shuffling. PLoS Biol. 14, e1002353 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. Consortium, T. H. G. et al. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94–98 (2012).

    Article  CAS  Google Scholar 

  74. Tuttle, E. M. et al. Divergence and functional degradation of a sex chromosome-like supergene. Curr. Biol. 26, 344–350 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Wellenreuther, M. & Bernatchez, L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol. Evol. 33, 427–440 (2018).

    PubMed  Article  Google Scholar 

  76. Jones, M. R. et al. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science 360, 1355–1358 (2018).

    CAS  PubMed  Article  Google Scholar 

  77. Rendón-Anaya, M. et al. Genomic history of the origin and domestication of common bean unveils its closest sister species. Genome Biol. 18, 60 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  78. Zimova, M., Mills, L. S. & Nowak, J. J. High fitness costs of climate change-induced camouflage mismatch. Ecol. Lett. 19, 299–307 (2016).

    PubMed  Article  Google Scholar 

  79. Vallejo-Marín, M. & Hiscock, S. J. Hybridization and hybrid speciation under global change. New Phytol. 211, 1170–1187 (2016).

    PubMed  Article  Google Scholar 

  80. Wendel, J. F., Lisch, D., Hu, G. & Mason, A. S. The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. Curr. Opin. Genet. Dev. 49, 1–7 (2018).

    CAS  PubMed  Article  Google Scholar 

  81. Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, Sunderland, MA, USA, 2004).

  82. Nieto Feliner, G. et al. Is homoploid hybrid speciation that rare? An empiricist’s view. Heredity 118, 513–516 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Schumer, M., Rosenthal, G. G. & Andolfatto, P. What do we mean when we talk about hybrid speciation? Heredity 120, 379–382 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  84. Rieseberg, L. H., Van Fossen, C. & Desrochers, A. M. Hybrid speciation accompanied by genomic reorganization in wild sunflowers. Nature 375, 313–316 (1995).

    CAS  Article  Google Scholar 

  85. Rieseberg, L. H., Sinervo, B., Linder, C. R., Ungerer, M. C. & Arias, D. M. Role of gene interactions in hybrid speciation: evidence from ancient and experimental hybrids. Science 272, 741–745 (1996).

    CAS  PubMed  Article  Google Scholar 

  86. Rieseberg, L. H. et al. Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301, 1211–1216 (2003).

    CAS  PubMed  Article  Google Scholar 

  87. Lamichhaney, S. et al. Rapid hybrid speciation in Darwin’s finches. Science 359, 224–228 (2018).

    CAS  PubMed  Article  Google Scholar 

  88. Leducq, J.-B. et al. Mitochondrial recombination and introgression during speciation by hybridization. Mol. Biol. Evol. 34, 1947–1959 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. Leducq, J.-B. et al. Speciation driven by hybridization and chromosomal plasticity in a wild yeast. Nat. Microbiol. 1, 15003 (2016).

    CAS  PubMed  Article  Google Scholar 

  90. Mixão, V. & Gabaldón, T. Hybridization and emergence of virulence in opportunistic human yeast pathogens. Yeast 35, 5–20 (2018).

    PubMed  Article  CAS  Google Scholar 

  91. Depotter, J. R., Seidl, M. F., Wood, T. A. & Thomma, B. P. Interspecific hybridization impacts host range and pathogenicity of filamentous microbes. Curr. Opin. Microbiol. 32, 7–13 (2016).

    CAS  PubMed  Article  Google Scholar 

  92. Pryszcz, L. P. et al. The genomic aftermath of hybridization in the opportunistic pathogen Candida metapsilosis. PLoS Genet. 11, e1005626–e1005629 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  93. Schröder, M. S. et al. Multiple origins of the pathogenic yeast Candida orthopsilosis by separate hybridizations between two parental species. PLoS Genet. 12, e1006404–e1006425 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  94. Menardo, F. et al. Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species. Nat. Genet. 48, 201–205 (2016).

    CAS  PubMed  Article  Google Scholar 

  95. Barrera-Guzmán, A. O., Aleixo, A., Shawkey, M. D. & Weir, J. T. Hybrid speciation leads to novel male secondary sexual ornamentation of an Amazonian bird. Proc. Natl. Acad. Sci. USA 115, E218–E225 (2018).

    PubMed  Google Scholar 

  96. Trier, C. N., Hermansen, J. S., Sætre, G.-P. & Bailey, R. I. Evidence for mito-nuclear and sex-linked reproductive barriers between the hybrid Italian sparrow and its parent species. PLoS Genet. 10, e1004075 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  97. Hermansen, J. S. et al. Hybrid speciation through sorting of parental incompatibilities in Italian sparrows. Mol. Ecol. 23, 5831–5842 (2014).

    PubMed  Article  Google Scholar 

  98. Elgvin, T. O. et al. The genomic mosaicism of hybrid speciation. Sci. Adv. 3, e1602996 (2017).

  99. Rosenthal, G. G., Schumer, M. & Andolfatto, P. How the manakin got its crown: a novel trait that is unlikely to cause speciation. Proc. Natl. Acad. Sci. USA 115, E4144–E4145 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  100. Hibbins, M. S. & Hahn, M. W. Population genetic tests for the direction and relative timing of introgression. Preprint at https://doi.org/10.1101/328575 (2018).

  101. Hvala, J. A., Frayer, M. E. & Payseur, B. A. Signatures of hybridization and speciation in genomic patterns of ancestry. Evolution 72, 1540–1552 (2018).

    CAS  Article  Google Scholar 

  102. Fontaine, M. C. et al. Mosquito genomics. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347, 1258524 (2015).

    PubMed  Article  CAS  Google Scholar 

  103. Arnold, B. J. et al. Borrowed alleles and convergence in serpentine adaptation. Proc. Natl. Acad. Sci. USA 113, 8320–8325 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. Dennenmoser, S. et al. Copy number increases of transposable elements and protein-coding genes in an invasive fish of hybrid origin. Mol. Ecol. 26, 4712–4724 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank D. Jackson for assistance with figure design.

Author information

Authors and Affiliations

Authors

Contributions

S.A.T and E.L.L conceived of and wrote the review.

Corresponding author

Correspondence to Scott A. Taylor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taylor, S.A., Larson, E.L. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat Ecol Evol 3, 170–177 (2019). https://doi.org/10.1038/s41559-018-0777-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0777-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing