Review Article | Published:

Insights from genomes into the evolutionary importance and prevalence of hybridization in nature

Abstract

Hybridization is an evolutionary phenomenon that has fascinated biologists for centuries. Prior to the advent of whole-genome sequencing, it was clear that hybridization had played a role in the evolutionary history of many extant taxa, particularly plants. The extent to which hybridization has contributed to the evolution of Earth’s biodiversity has, however, been the topic of much debate. Analyses of whole genomes are providing further insight into this evolutionary problem. Recent studies have documented ancient hybridization in a diverse array of taxa including mammals, birds, fish, fungi, and insects. Evidence for adaptive introgression is being documented in an increasing number of systems, though demonstrating the adaptive function of introgressed genomic regions remains difficult. And finally, several new homoploid hybrid speciation events have been reported. Here we review the current state of the field and specifically evaluate the additional insights gained from having access to whole-genome data and the challenges that remain with respect to understanding the evolutionary relevance and frequency of ancient hybridization, adaptive introgression, and hybrid speciation in nature.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Lotsy, J.P. in Evolution by Means of Hybridization 56–64 (Springer, New York, 1916).

  2. 2.

    Anderson, E. Introgressive hybridization. Biol. Rev. Camb. Philos. Soc. 28, 280–307 (1953).

  3. 3.

    Stebbins, G. The role of hybridization in evolution. Proc. Am. Phil. Soc. 103, 231–251 (1959).

  4. 4.

    Harrison, R. G. Hybrid zones: windows on evolutionary process 7, 69–128 (1990).

  5. 5.

    Harrison, R. G. & Larson, E. L. Hybridization, introgression, and the nature of species boundaries. J. Hered 105, 795–809 (2014).

  6. 6.

    Gompert, Z., Mandeville, E. G. & Buerkle, C. A. Analysis of population genomic data from hybrid zones. Annu. Rev. Ecol. Evol. Syst. 48, 207–229 (2017).

  7. 7.

    Abbott, R. J. Plant speciation across environmental gradients and the occurrence and nature of hybrid zones. J. Syst. Evol. 55, 238–258 (2017).

  8. 8.

    Turner, L. M. & Harr, B. Genome-wide mapping in a house mouse hybrid zone reveals hybrid sterility loci and Dobzhansky–Muller interactions. eLife 3, 02504 (2014).

  9. 9.

    Taylor, S. A. et al. Climate-mediated movement of an avian hybrid zone. Curr. Biol. 24, 671–676 (2014).

  10. 10.

    Scordato, E. S. C. et al. Genomic variation across two barn swallow hybrid zones reveals traits associated with divergence in sympatry and allopatry. Mol. Ecol. 26, 5676–5691 (2017).

  11. 11.

    Rafati, N. et al. A genomic map of clinal variation across the European rabbit hybrid zone. Mol. Ecol. 27, 1457–1478 (2018).

  12. 12.

    Sung, C.-J., Bell, K. L., Nice, C. C. & Martin, N. H. Integrating Bayesian genomic cline analyses and association mapping of morphological and ecological traits to dissect reproductive isolation and introgression in a Louisiana Iris hybrid zone. Mol. Ecol. 27, 959–978 (2018).

  13. 13.

    Seehausen, O. Hybridization and adaptive radiation. Trends Ecol. Evol. 19, 198–207 (2004).

  14. 14.

    Abbott, R. J., Barton, N. H. & Good, J. M. Genomics of hybridization and its evolutionary consequences. Mol. Ecol. 25, 2325–2332 (2016).

  15. 15.

    Roux, C. et al. Shedding light on the grey zone of speciation along a continuum of genomic divergence. PLoS Biol. 14, e2000234 (2016).

  16. 16.

    Schumer, M., Rosenthal, G. G. & Andolfatto, P. How common is homoploid hybrid speciation? Evolution 68, 1553–1560 (2014).

  17. 17.

    Rieseberg, L. H. Hybrid origins of plant species. Annu. Rev. Ecol. Syst. 28, 359–389 (1997).

  18. 18.

    Arnold, M. L. Divergence with genetic exchange. (Oxford University Press, Oxford, UK, 2015).

  19. 19.

    Grant, V. Plant Speciation. (Columbia University Press, New York, 1971).

  20. 20.

    Barton, N. H. Does hybridization influence speciation? J. Evol. Biol. 26, 267–269 (2013).

  21. 21.

    Barton, N. H. The role of hybridization in evolution. Mol. Ecol. 10, 551–568 (2001).

  22. 22.

    Abbott, R. et al. Hybridization and speciation. J. Evol. Biol. 26, 229–246 (2013).

  23. 23.

    Mallet, J. Hybrid speciation. Nature 446, 279–283 (2007).

  24. 24.

    Sankararaman, S. et al. The genomic landscape of Neanderthal ancestry in present-day humans. Nature 507, 354–357 (2014).

  25. 25.

    Dutheil, J. Y., Munch, K., Nam, K., Mailund, T. & Schierup, M. H. Strong selective sweeps on the X chromosome in the human–chimpanzee ancestor explain its low divergence. PLoS Genet. 11, e1005451 (2015).

  26. 26.

    Dannemann, M., Andrés, A. M. & Kelso, J. Introgression of Neandertal- and Denisovan-like haplotypes contributes to adaptive variation in human toll-like receptors. Am. J. Hum. Genet. 98, 22–33 (2016).

  27. 27.

    Hackinger, S. et al. Wide distribution and altitude correlation of an archaic high-altitude-adaptive EPAS1 haplotype in the Himalayas. Hum. Genet. 135, 393–402 (2016).

  28. 28.

    Simonti, C. N. et al. The phenotypic legacy of admixture between modern humans and Neandertals. Science 351, 737–741 (2016).

  29. 29.

    Palkopoulou, E. et al. A comprehensive genomic history of extinct and living elephants. Proc. Natl. Acad. Sci. USA 115, E2566–E2574 (2018).

  30. 30.

    Meier, J. I. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8, 14363 (2017).

  31. 31.

    Irisarri, I. et al. Phylogenomics uncovers early hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nat. Commun. 9, 3159 (2018).

  32. 32.

    Osborne, O. G., Chapman, M. A., Nevado, B. & Filatov, D. A. Maintenance of species boundaries despite ongoing gene flow in ragworts. Genome Biol. Evol. 8, 1038–1047 (2016).

  33. 33.

    Payseur, B. A. & Rieseberg, L. H. A genomic perspective on hybridization and speciation. Mol. Ecol. 25, 2337–2360 (2016).

  34. 34.

    Marcet-Houben, M. & Gabaldón, T. Beyond the whole-genome duplication: phylogenetic evidence for an ancient interspecies hybridization in the Baker’s yeast lineage. PLoS Biol. 13, e1002220 (2015).

  35. 35.

    Toews, D. P. L. et al. Plumage genes and little else distinguish the genomes of hybridizing warblers. Curr. Biol. 26, 2313–2318 (2016).

  36. 36.

    Schumer, M. et al. Assortative mating and persistent reproductive isolation in hybrids. Proc. Natl. Acad. Sci. USA 114, 10936–10941 (2017).

  37. 37.

    Lunt, D. H., Kumar, S., Koutsovoulos, G. & Blaxter, M. L. The complex hybrid origins of the root knot nematodes revealed through comparative genomics. PeerJ 2, e356 (2014).

  38. 38.

    Lindtke, D., Gompert, Z., Lexer, C. & Buerkle, C. A. Unexpected ancestry of Populus seedlings from a hybrid zone implies a large role for postzygotic selection in the maintenance of species. Mol. Ecol. 23, 4316–4330 (2014).

  39. 39.

    Christe, C. et al. Selection against recombinant hybrids maintains reproductive isolation in hybridizing Populus species despite F1 fertility and recurrent gene flow. Mol. Ecol. 25, 2482–2498 (2016).

  40. 40.

    Colella, J. P. et al. Whole-genome analysis of Mustela erminea finds that pulsed hybridization impacts evolution at high latitudes. Commun. Biol. 1, 51 (2018).

  41. 41.

    Mandeville, E. G. et al. Inconsistent reproductive isolation revealed by interactions between Catostomus fish species. Evol. Lett. 1, 255–268 (2017).

  42. 42.

    Runemark, A., Fernández, L. P., Eroukhmanoff, F. & Sætre, G.-P. Genomic contingencies and the potential for local adaptation in a hybrid species. Am. Nat. 192, 10–22 (2018).

  43. 43.

    Runemark, A. et al. Variation and constraints in hybrid genome formation. Nat. Ecol. Evol. 2, 549–556 (2018).

  44. 44.

    Harrison, R. G. & Larson, E. L. Heterogeneous genome divergence, differential introgression, and the origin and structure of hybrid zones. Mol. Ecol. 25, 2454–2466 (2016).

  45. 45.

    Luo, X. et al. Chasing ghosts: allopolyploid origin of Oxyria sinensis (Polygonaceae) from its only diploid congener and an unknown ancestor. Mol. Ecol. 26, 3037–3049 (2017).

  46. 46.

    Sedghifar, A., Brandvain, Y. & Ralph, P. Beyond clines: lineages and haplotype blocks in hybrid zones. Mol. Ecol. 25, 2559–2576 (2016).

  47. 47.

    Smith, J., Payseur, B. & Novembre, J. Expected patterns of local ancestry in a hybrid zone. Preprint at https://doi.org/10.1101/389924 (2018).

  48. 48.

    Skov, L. et al. Detecting archaic introgression using an unadmixed outgroup. PLoS Genet. 14, e1007641 (2018).

  49. 49.

    Jones, M. R. & Good, J. M. Targeted capture in evolutionary and ecological genomics. Mol. Ecol. 25, 185–202 (2016).

  50. 50.

    Holmes, M. W. et al. Natural history collections as windows on evolutionary processes. Mol. Ecol. 25, 864–881 (2016).

  51. 51.

    vonHoldt, B. M. et al. Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf. Sci. Adv. 2, e1501714 (2016).

  52. 52.

    Svardal, H. et al. Ancient hybridization and strong adaptation to viruses across African vervet monkey populations. Nat. Genet. 49, 1705–1713 (2017).

  53. 53.

    de Manuel, M. et al. Chimpanzee genomic diversity reveals ancient admixture with bonobos. Science 354, 477–481 (2016).

  54. 54.

    Greig, D., Louis, E. J., Borts, R. H. & Travisano, M. Hybrid speciation in experimental populations of yeast. Science 298, 1773–1775 (2002).

  55. 55.

    Cahill, J. A. et al. Genomic evidence of widespread admixture from polar bears into brown bears during the last ice age. Mol. Biol. Evol. 35, 1120–1129 (2018).

  56. 56.

    Juric, I., Aeschbacher, S. & Coop, G. The strength of selection against Neanderthal introgression. PLoS Genet. 12, e1006340 (2016).

  57. 57.

    Harris, K. & Nielsen, R. The genetic cost of Neanderthal introgression. Genetics 203, 881–891 (2016).

  58. 58.

    Schumer, M., Cui, R., Powell, D. L., Rosenthal, G. G. & Andolfatto, P. Ancient hybridization and genomic stabilization in a swordtail fish. Mol. Ecol. 25, 2661–2679 (2016).

  59. 59.

    Schumer, M. et al. Natural selection interacts with recombination to shape the evolution of hybrid genomes. Science 360, 656–660 (2018).

  60. 60.

    Richards, E. J., Poelstra, J. W. & Martin, C. H. Don’t throw out the sympatric speciation with the crater lake water: fine-scale investigation of introgression provides equivocal support for causal role of secondary gene flow in one of the clearest examples of sympatric speciation. Evol. Lett. 2, 524–540 (2018).

  61. 61.

    Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518, 371–375 (2015).

  62. 62.

    Berner, D. & Salzburger, W. The genomics of organismal diversification illuminated by adaptive radiations. Trends Genet. 31, 491–499 (2015).

  63. 63.

    vonHoldt, B. M., Brzeski, K. E., Wilcove, D. S. & Rutledge, L. Y. Redefining the role of admixture and genomics in species conservation. Conserv. Lett. 11, e12371 (2017).

  64. 64.

    Arnold, M. L. & Kunte, K. Adaptive genetic exchange: a tangled history of admixture and evolutionary innovation. Trends Ecol. Evol. 32, 601–611 (2017).

  65. 65.

    Suarez-Gonzalez, A., Lexer, C. & Cronk, Q. C. B. Adaptive introgression: a plant perspective. Biol. Lett. 14, 20170688 (2018).

  66. 66.

    Hedrick, P. W. Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Mol. Ecol. 22, 4606–4618 (2013).

  67. 67.

    Suarez-Gonzalez, A. et al. Genomic and functional approaches reveal a case of adaptive introgression from Populus balsamifera (balsam poplar) in P. trichocarpa (black cottonwood). Mol. Ecol. 25, 2427–2442 (2016).

  68. 68.

    Grossen, C., Keller, L., Biebach, I. & Croll, D. Introgression from domestic goat generated variation at the major histocompatibility complex of Alpine ibex. PLoS Genet. 10, e1004438 (2014).

  69. 69.

    Kim, B. Y., Huber, C. D. & Lohmueller, K. Deleterious variation mimics signatures of genomic incompatibility and adaptive introgression. Preprint at https://doi.org/10.1101/221705 (2017).

  70. 70.

    Song, Y. et al. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr. Biol. 21, 1296–1301 (2011).

  71. 71.

    Liu, K. J. et al. Interspecific introgressive origin of genomic diversity in the house mouse. Proc. Natl. Acad. Sci. USA 112, 196–201 (2015).

  72. 72.

    Wallbank, R. W. R. et al. Evolutionary novelty in a butterfly wing pattern through enhancer shuffling. PLoS Biol. 14, e1002353 (2016).

  73. 73.

    Consortium, T. H. G. et al. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94–98 (2012).

  74. 74.

    Tuttle, E. M. et al. Divergence and functional degradation of a sex chromosome-like supergene. Curr. Biol. 26, 344–350 (2016).

  75. 75.

    Wellenreuther, M. & Bernatchez, L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol. Evol. 33, 427–440 (2018).

  76. 76.

    Jones, M. R. et al. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science 360, 1355–1358 (2018).

  77. 77.

    Rendón-Anaya, M. et al. Genomic history of the origin and domestication of common bean unveils its closest sister species. Genome Biol. 18, 60 (2017).

  78. 78.

    Zimova, M., Mills, L. S. & Nowak, J. J. High fitness costs of climate change-induced camouflage mismatch. Ecol. Lett. 19, 299–307 (2016).

  79. 79.

    Vallejo-Marín, M. & Hiscock, S. J. Hybridization and hybrid speciation under global change. New Phytol. 211, 1170–1187 (2016).

  80. 80.

    Wendel, J. F., Lisch, D., Hu, G. & Mason, A. S. The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. Curr. Opin. Genet. Dev. 49, 1–7 (2018).

  81. 81.

    Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, Sunderland, MA, USA, 2004).

  82. 82.

    Nieto Feliner, G. et al. Is homoploid hybrid speciation that rare? An empiricist’s view. Heredity 118, 513–516 (2017).

  83. 83.

    Schumer, M., Rosenthal, G. G. & Andolfatto, P. What do we mean when we talk about hybrid speciation? Heredity 120, 379–382 (2018).

  84. 84.

    Rieseberg, L. H., Van Fossen, C. & Desrochers, A. M. Hybrid speciation accompanied by genomic reorganization in wild sunflowers. Nature 375, 313–316 (1995).

  85. 85.

    Rieseberg, L. H., Sinervo, B., Linder, C. R., Ungerer, M. C. & Arias, D. M. Role of gene interactions in hybrid speciation: evidence from ancient and experimental hybrids. Science 272, 741–745 (1996).

  86. 86.

    Rieseberg, L. H. et al. Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301, 1211–1216 (2003).

  87. 87.

    Lamichhaney, S. et al. Rapid hybrid speciation in Darwin’s finches. Science 359, 224–228 (2018).

  88. 88.

    Leducq, J.-B. et al. Mitochondrial recombination and introgression during speciation by hybridization. Mol. Biol. Evol. 34, 1947–1959 (2017).

  89. 89.

    Leducq, J.-B. et al. Speciation driven by hybridization and chromosomal plasticity in a wild yeast. Nat. Microbiol. 1, 15003 (2016).

  90. 90.

    Mixão, V. & Gabaldón, T. Hybridization and emergence of virulence in opportunistic human yeast pathogens. Yeast 35, 5–20 (2018).

  91. 91.

    Depotter, J. R., Seidl, M. F., Wood, T. A. & Thomma, B. P. Interspecific hybridization impacts host range and pathogenicity of filamentous microbes. Curr. Opin. Microbiol. 32, 7–13 (2016).

  92. 92.

    Pryszcz, L. P. et al. The genomic aftermath of hybridization in the opportunistic pathogen Candida metapsilosis. PLoS Genet. 11, e1005626–e1005629 (2015).

  93. 93.

    Schröder, M. S. et al. Multiple origins of the pathogenic yeast Candida orthopsilosis by separate hybridizations between two parental species. PLoS Genet. 12, e1006404–e1006425 (2016).

  94. 94.

    Menardo, F. et al. Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species. Nat. Genet. 48, 201–205 (2016).

  95. 95.

    Barrera-Guzmán, A. O., Aleixo, A., Shawkey, M. D. & Weir, J. T. Hybrid speciation leads to novel male secondary sexual ornamentation of an Amazonian bird. Proc. Natl. Acad. Sci. USA 115, E218–E225 (2018).

  96. 96.

    Trier, C. N., Hermansen, J. S., Sætre, G.-P. & Bailey, R. I. Evidence for mito-nuclear and sex-linked reproductive barriers between the hybrid Italian sparrow and its parent species. PLoS Genet. 10, e1004075 (2014).

  97. 97.

    Hermansen, J. S. et al. Hybrid speciation through sorting of parental incompatibilities in Italian sparrows. Mol. Ecol. 23, 5831–5842 (2014).

  98. 98.

    Elgvin, T. O. et al. The genomic mosaicism of hybrid speciation. Sci. Adv. 3, e1602996 (2017).

  99. 99.

    Rosenthal, G. G., Schumer, M. & Andolfatto, P. How the manakin got its crown: a novel trait that is unlikely to cause speciation. Proc. Natl. Acad. Sci. USA 115, E4144–E4145 (2018).

  100. 100.

    Hibbins, M. S. & Hahn, M. W. Population genetic tests for the direction and relative timing of introgression. Preprint at https://doi.org/10.1101/328575 (2018).

  101. 101.

    Hvala, J. A., Frayer, M. E. & Payseur, B. A. Signatures of hybridization and speciation in genomic patterns of ancestry. Evolution 72, 1540–1552 (2018).

  102. 102.

    Fontaine, M. C. et al. Mosquito genomics. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347, 1258524 (2015).

  103. 103.

    Arnold, B. J. et al. Borrowed alleles and convergence in serpentine adaptation. Proc. Natl. Acad. Sci. USA 113, 8320–8325 (2016).

  104. 104.

    Dennenmoser, S. et al. Copy number increases of transposable elements and protein-coding genes in an invasive fish of hybrid origin. Mol. Ecol. 26, 4712–4724 (2017).

Download references

Acknowledgements

We thank D. Jackson for assistance with figure design.

Author information

S.A.T and E.L.L conceived of and wrote the review.

Competing interests

The authors declare no competing interests.

Correspondence to Scott A. Taylor.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: There is increasing evidence for widespread ancient hybridization.

Melissa Hoyer (a,b); Croisy/Depositphotos.com (c, human skull); Creativemarc/Depositphotos.com (c, Neanderthal skull); iLexx/Depositphotos.com (d); vvoennyy/Depositphotos.com (e); Pierre Fidenci (f); David Toews (g); Ole Seehausen (h); chrupka/Depositphotos.com (map)

Fig. 2: Adaptive introgression is difficult to demonstrate.
Fig. 3: Hybrid speciation in nature appears to be rare.

K. Thalia Grant and Peter R. Grant (a); iLexx/Depositphotos.com (b)