Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Naturally clonal vertebrates are an untapped resource in ecology and evolution research


Science requires replication. The development of many cloned or isogenic model organisms is a testament to this. But researchers are reluctant to use these traditional animal model systems for certain questions in evolution or ecology research, because of concerns over relevance or inbreeding. It has largely been overlooked that there are a substantial number of vertebrate species that reproduce clonally in nature. Here we highlight how use of these naturally evolved, phenotypically complex animals can push the boundaries of traditional experimental design and contribute to answering fundamental questions in the fields of ecology and evolution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Three examples of unisexual vertebrates.
Fig. 2: Modes of unisexual reproduction.


  1. 1.

    Edwards, J. L. et al. Cloning adult farm animals: a review of the possibilities and problems associated with somatic cell nuclear transfer. Am. J. Reprod. Immunol. 50, 113–123 (2003).

    CAS  PubMed  Google Scholar 

  2. 2.

    Bolker, J. Model organisms: there’s more to life than rats and flies. Nature 491, 31–33 (2012).

    CAS  PubMed  Google Scholar 

  3. 3.

    Hubbs, C. L. & Hubbs, L. C. Apparent parthenogenesis in nature, in a form of fish of hybrid origin. Science 76, 628–630 (1932).

    CAS  PubMed  Google Scholar 

  4. 4.

    Vrijenhoek, R. C., Dawley, R. M., Cole, C. J. & Bogart, J. P. in Evolution and Ecology of Unisexual Vertebrates Vol. 466 (eds Dawley, R. M. & Bogart, J. P.) 19–23 (New York State Museum Bulletin, New York, 1989).

  5. 5.

    Neaves, W. B. & Baumann, P. Unisexual reproduction among vertebrates. Trends Genet. 27, 81–88 (2011).

    CAS  PubMed  Google Scholar 

  6. 6.

    Avise, J. Clonality: The Genetics, Ecology, and Evolution of Sexual Abstinence In Vertebrate Animals (Oxford Univ. Press, Oxford, 2008).

    Google Scholar 

  7. 7.

    Vrijenhoek, R. C. Unisexual fish: model systems for studying ecology and evolution. Annu. Rev. Ecol. Syst. 25, 71–96 (1994).

    Google Scholar 

  8. 8.

    Crews, D. in Evolution and Ecology of Unisexual Vertebrates Vol. 466 (eds Dawley, R. M. & Bogart, J. P.) 132–143 (New York State Museum Bulletin, New York, 1989).

  9. 9.

    Dawley, R. M. & Bogart, J. P. Evolution and Ecology of Unisexual Vertebrates Vol. 466 (New York State Museum Bulletin: New York, 1989).

  10. 10.

    Sinclair, E. A., Pramuk, J. B., Bezy, R. L., Crandall, K. A. & Sites, J. W. Jr. DNA evidence for nonhybrid origins of parthenogenesis in natural populations of vertebrates. Evolution 64, 1346–1357 (2010).

    PubMed  Google Scholar 

  11. 11.

    Warren, W. C. et al. Clonal polymorphism and high heterozygosity in the celibate genome of the Amazon molly. Nat. Ecol. Evol. 2, 669–679 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Crews, D., Grassman, M. & Lindzey, J. Behavioral facilitation of reproduction in sexual and unisexual whiptail lizards. Proc. Natl Acad. Sci. USA 83, 9547–9550 (1986).

    CAS  PubMed  Google Scholar 

  13. 13.

    Fujita, M. K. & Moritz, C. Origin and evolution of parthenogenetic genomes in lizards: current state and future directions. Cytogenet. Genome Res. 127, 261–272 (2009).

    CAS  PubMed  Google Scholar 

  14. 14.

    Schlupp, I. The evolutionary ecology of gynogenesis. Annu. Rev. Ecol. Evol. Syst. 36, 399–417 (2005).

    Google Scholar 

  15. 15.

    Lampert, K. P. & Schartl, M. The origin and evolution of a unisexual hybrid: Poecilia formosa. Phil. Trans. R. Soc. B 363, 2901–2909 (2008).

    CAS  PubMed  Google Scholar 

  16. 16.

    Stöck, M., Lampert, K. P., Möller, D., Schlupp, I. & Schartl, M. Monophyletic origin of multiple clonal lineages in an asexual fish (Poecilia formosa). Mol. Ecol. 19, 5204–5215 (2010).

    PubMed  Google Scholar 

  17. 17.

    Moritz, C., Donnellan, S., Adams, M. & Baverstock, P. R. The origin and evolution of parthenogenesis in Heteronotia binoei (Gekkonidae): extensive genotypic diversity among parthenogens. Evolution 43, 994–1003 (1989).

    CAS  PubMed  Google Scholar 

  18. 18.

    Craig, S. F., Slobodkin, L. B., Wray, G. A. & Biermann, C. H. The ‘paradox’of polyembryony: a review of the cases and a hypothesis for its evolution. Evol. Ecol. 11, 127–143 (1997).

    Google Scholar 

  19. 19.

    Tatarenkov, A., Lima, S. M., Taylor, D. S. & Avise, J. C. Long-term retention of self-fertilization in a fish clade. Proc. Natl Acad. Sci. USA 106, 14456–14459 (2009).

    CAS  PubMed  Google Scholar 

  20. 20.

    Abbott, J. K. & Morrow, E. H. Obtaining snapshots of genetic variation using hemiclonal analysis. Trends Ecol. Evol. 26, 359–368 (2011).

    PubMed  Google Scholar 

  21. 21.

    Bossdorf, O., Richards, C. L. & Pigliucci, M. Epigenetics for ecologists. Ecol. Lett. 11, 106–115 (2008).

    PubMed  Google Scholar 

  22. 22.

    Ekblom, R. & Galindo, J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107, 1–15 (2011).

    CAS  PubMed  Google Scholar 

  23. 23.

    Matz, M. V. Fantastic beasts and how to sequence them: ecological genomics for obscure model organisms. Trends Genet. 34, 121–132 (2018).

    CAS  PubMed  Google Scholar 

  24. 24.

    Kenkel, C. D. & Matz, M. V. Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nat. Ecol. Evol. 1, 0014 (2016).

    Google Scholar 

  25. 25.

    Oleksiak, M. F., Churchill, G. A. & Crawford, D. L. Variation in gene expression within and among natural populations. Nat. Genet. 32, 261–266 (2002).

    CAS  PubMed  Google Scholar 

  26. 26.

    Crowley, J. J. et al. Analyses of allele-specific gene expression in highly divergent mouse crosses identifies pervasive allelic imbalance. Nat. Genet. 47, 353–360 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Brenowitz, E. A. & Zakon, H. H. Emerging from the bottleneck: benefits of the comparative approach to modern neuroscience. Trends Neurosci. 38, 273–278 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Todd, E. V., Black, M. A. & Gemmell, N. J. The power and promise of RNA-seq in ecology and evolution. Mol. Ecol. 25, 1224–1241 (2016).

    CAS  PubMed  Google Scholar 

  29. 29.

    Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    CAS  PubMed  Google Scholar 

  30. 30.

    Verhoeven, K. J. F. & Preite, V. Epigenetic variation in asexually reproducing organisms. Evolution 68, 644–655 (2014).

    PubMed  Google Scholar 

  31. 31.

    Kalisz, S. & Purugganan, M. D. Epialleles via DNA methylation: consequences for plant evolution. Trends Ecol. Evol. 19, 309–314 (2004).

    PubMed  Google Scholar 

  32. 32.

    Oldach, M. J., Workentine, M., Matz, M. V., Fan, T. Y. & Vize, P. D. Transcriptome dynamics over a lunar month in a broadcast spawning acroporid coral. Mol. Ecol. 26, 2514–2526 (2017).

    PubMed  Google Scholar 

  33. 33.

    Bierbach, D., Laskowski, K. L. & Wolf, M. Behavioural individuality in clonal fish arises despite near-identical rearing conditions. Nat. Commun. 8, 15361 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Edenbrow, M. & Croft, D. P. Behavioural types and life history strategies during ontogeny in the mangrove killifish. Kryptolebias marmoratus. Anim. Behav. 82, 731–741 (2011).

    Google Scholar 

  35. 35.

    Schlosser, I. J., Doeringsfeld, M. R., Elder, J. F. & Arzayus, L. F. Niche relationships of clonal and sexual fish in a heterogeneous landscape. Ecology 79, 953–968 (1998).

    Google Scholar 

  36. 36.

    Cole, C. J., Taylor, H. L. & Townsend, C. R. Morphological variation in a unisexual whiptail lizard (Aspidoscelis exsanguis) and one of its bisexual parental species (Aspidoscelis inornata) (Reptilia: Squamata: Teiidae): is the clonal species less variable? Am. Mus. Novit. 3849, 1–20 (2016).

    Google Scholar 

  37. 37.

    Dawley, R. M., Schultz, R. J. & Goddard, K. A. Clonal reproduction and polyploidy in unisexual hybrids of Phoxinus eos and Phoxinus neogaeus (Pisces; Cyprinidae). Copeia 1987, 275–283 (1987).

    Google Scholar 

  38. 38.

    Massicotte, R., Whitelaw, E. & Angers, B. DNA methylation: a source of random variation in natural populations. Epigenetics 6, 421–427 (2011).

    CAS  PubMed  Google Scholar 

  39. 39.

    Massicotte, R. & Angers, B. General-purpose genotype or how epigenetics extend the flexibility of a genotype. Genet. Res. Int. 2012, 317175 (2012).

    PubMed  Google Scholar 

  40. 40.

    Leung, C., Breton, S. & Angers, B. Facing environmental predictability with different sources of epigenetic variation. Ecol. Evol. 6, 5234–5245 (2016).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Schlupp, I., Parzefall, J. & Schartl, M. Biogeography of the Amazon molly. Poecilia formosa. J. Biogeogr. 29, 1–6 (2002).

    Google Scholar 

  42. 42.

    Bi, K. & Bogart, J. P. Time and time again: unisexual salamanders (genus Ambystoma) are the oldest unisexual vertebrates. BMC Evol. Biol. 10, 238 (2010).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Castonguay, E. & Angers, B. The key role of epigenetics in the persistence of asexual lineages. Genet. Res. Int. 2012, 534289 (2012).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Vogt, G. Facilitation of environmental adaptation and evolution by epigenetic phenotype variation: insights from clonal, invasive, polyploid, and domesticated animals. Environ. Epigenet. 3, dvx002 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    McNamara, J. M., Dall, S. R. X., Hammerstein, P. & Leimar, O. Detection vs. selection: integration of genetic, epigenetic and environmental cues in fluctuating environments. Ecol. Lett. 19, 1267–1276 (2016).

    PubMed  Google Scholar 

  46. 46.

    Stamps, J. A. & Frankenhuis, W. E. Bayesian models of development. Trends Ecol. Evol. 31, 260–268 (2016).

    PubMed  Google Scholar 

  47. 47.

    Dall, S. R., McNamara, J. M. & Leimar, O. Genes as cues: phenotypic integration of genetic and epigenetic information from a Darwinian perspective. Trends Ecol. Evol. 30, 327–333 (2015).

    PubMed  Google Scholar 

  48. 48.

    Mackay, T. F. The genetic architecture of quantitative traits. Annu. Rev. Genet. 35, 303–339 (2001).

    CAS  PubMed  Google Scholar 

  49. 49.

    Fisher, D. N., Brachmann, M. & Burant, J. B. Complex dynamics and the development of behavioural individuality. Anim. Behav. 138, e1–e6 (2018).

    Google Scholar 

  50. 50.

    Frankenhuis, W. E. & Panchanathan, K. Balancing sampling and specialization: an adaptationist model of incremental development. Proc. R. Soc. B 278, 3558–3565 (2011).

    PubMed  Google Scholar 

  51. 51.

    Freund, J. et al. Emergence of individuality in genetically identical mice. Science 340, 756–759 (2013).

    CAS  PubMed  Google Scholar 

  52. 52.

    Vogt, G. et al. Production of different phenotypes from the same genotype in the same environment by developmental variation. J. Exp. Biol. 211, 510–523 (2008).

    CAS  PubMed  Google Scholar 

  53. 53.

    Gärtner, K. A third component causing random variability beside environment and genotype. A reason for the limited success of a 30 year long effort to standardize laboratory animals? Lab. Anim. 24, 71–77 (1990).

    PubMed  Google Scholar 

  54. 54.

    McNamara, J. M., Green, R. F. & Olsson, O. Bayes’ theorem and its applications in animal behaviour. Oikos 112, 243–251 (2006).

    Google Scholar 

  55. 55.

    Trimmer, P. C. et al. Decision-making under uncertainty: biases and Bayesians. Anim. Cogn. 14, 465–476 (2011).

    PubMed  Google Scholar 

  56. 56.

    Stein, L. R., Bukhari, S. A. & Bell, A. M. Personal and transgenerational cues are nonadditive at the phenotypic and molecular level. Nat. Ecol. Evol. 2, 1306–1311 (2018).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Stamps, J. A., Biro, P. A., Mitchell, D. J. & Saltz, J. B. Bayesian updating during development predicts genotypic differences in plasticity. Evolution 72, 2167–2180 (2018).

    PubMed  Google Scholar 

  58. 58.

    Mousseau, T. A. & Fox, C. W. The adaptive significance of maternal effects. Trends Ecol. Evol. 13, 403–407 (1998).

    CAS  PubMed  Google Scholar 

  59. 59.

    Weaver, I. C. et al. Epigenetic programming by maternal behavior. Nat. Neurosci. 7, 847–854 (2004).

    CAS  PubMed  Google Scholar 

  60. 60.

    Dingemanse, N. J. & Wolf, M. Recent models for adaptive personality differences: a review. Phil. Trans. R. Soc. B 365, 3947–3958 (2010).

    PubMed  Google Scholar 

  61. 61.

    Bolnick, D. I. et al. The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).

    PubMed  Google Scholar 

  62. 62.

    Toscano, B. J., Gownaris, N. J., Heerhartz, S. M. & Monaco, C. J. Personality, foraging behavior and specialization: integrating behavioral and food web ecology at the individual level. Oecologia 182, 55–69 (2016).

    PubMed  Google Scholar 

  63. 63.

    Thornton, A. & Lukas, D. Individual variation in cognitive performance: developmental and evolutionary perspectives. Phil. Trans. R. Soc. B 367, 2773–2783 (2012).

    PubMed  Google Scholar 

  64. 64.

    Dingemanse, N. J. et al. Behavioural syndromes differ predictably between 12 populations of three-spined stickleback. J. Anim. Ecol. 76, 1128–1138 (2007).

    PubMed  Google Scholar 

  65. 65.

    Bell, A. M. & Sih, A. Exposure to predation generates personality in threespined sticklebacks (Gasterosteus aculeatus). Ecol. Lett. 10, 828–834 (2007).

    PubMed  Google Scholar 

  66. 66.

    Laskowski, K. L. & Bell, A. M. Competition avoidance drives individual differences in response to a changing food resource in sticklebacks. Ecol. Lett. 16, 746–753 (2013).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Laskowski, K. L. & Pruitt, J. N. Evidence of social niche construction: persistent and repeated social interactions generate stronger personalities in a social spider. Proc. R. Soc. B 281, 20133166 (2014).

    PubMed  Google Scholar 

  68. 68.

    Stamps, J. A. & Krishnan, V. V. Combining information from ancestors and personal experiences to predict individual differences in developmental trajectories. Am. Nat. 184, 647–657 (2014).

    PubMed  Google Scholar 

  69. 69.

    Dall, S. R. X., Houston, A. I. & McNamara, J. M. The behavioural ecology of personality: consistent individual differences from an adaptive perspective. Ecol. Lett. 7, 734–739 (2004).

    Google Scholar 

  70. 70.

    Biro, P. A. & Stamps, J. A. Are animal personality traits linked to life-history productivity? Trends Ecol. Evol. 23, 361–368 (2008).

    PubMed  Google Scholar 

  71. 71.

    Wolf, M. & Weissing, F. J. An explanatory framework for adaptive personality differences. Phil. Trans. R. Soc. B 365, 3959–3968 (2010).

    PubMed  Google Scholar 

  72. 72.

    Edenbrow, M. & Croft, D. P. Environmental and genetic effects shape the development of personality traits in the mangrove killifish Kryptolebias marmoratus. Oikos 122, 667–681 (2012).

    Google Scholar 

  73. 73.

    Bijleveld, A. I. et al. Personality drives physiological adjustments and is not related to survival. Proc. R. Soc. B 281, 20133135 (2014).

    PubMed  Google Scholar 

  74. 74.

    Clark, C. W. Antipredator behavior and the asset-protection principle. Behav. Ecol. 5, 159–170 (1994).

    Google Scholar 

  75. 75.

    Wolf, M., van Doorn, G. S., Leimar, O. & Weissing, F. J. Life-history trade-offs favour the evolution of animal personalities. Nature 447, 581–584 (2007).

    CAS  PubMed  Google Scholar 

  76. 76.

    Luttbeg, B. & Sih, A. Risk, resources and state-dependent adaptive behavioural syndromes. Phil. Trans. R. Soc. B 365, 3977–3990 (2010).

    PubMed  Google Scholar 

  77. 77.

    Mathot, K. J. & Dall, S. R. Metabolic rates can drive individual differences in information and insurance use under the risk of starvation. Am. Nat. 182, 611–620 (2013).

    PubMed  Google Scholar 

  78. 78.

    Kurvers, R. H. J. M., Krause, J., Croft, D. P., Wilson, A. D. M. & Wolf, M. The evolutionary and ecological consequences of animal social networks: emerging issues. Trends Ecol. Evol. 29, 326–335 (2014).

    PubMed  Google Scholar 

  79. 79.

    Krause, J. & Ruxton, G. D. Living in Groups (Oxford Univ. Press, Oxford, 2002).

    Google Scholar 

  80. 80.

    Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 84, 1144–1163 (2015).

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Wolf, M. & Krause, J. Why personality differences matter for social functioning and social structure. Trends Ecol. Evol. 29, 306–308 (2014).

    PubMed  Google Scholar 

  82. 82.

    Laskowski, K. L., Wolf, M. & Bierbach, D. The making of winners (and losers): how early dominance interactions determine adult social structure in a clonal fish. Proc. R. Soc. B 283, 20160183 (2016).

    PubMed  Google Scholar 

  83. 83.

    Firth, J. A. & Sheldon, B. C. Experimental manipulation of avian social structure reveals segregation is carried over across contexts. Proc. R. Soc. B 282, 20142350 (2015).

    PubMed  Google Scholar 

  84. 84.

    Liker, A. & Bókony, V. Larger groups are more successful in innovative problem solving in house sparrows. Proc. Natl Acad. Sci. USA 106, 7893–7898 (2009).

    CAS  PubMed  Google Scholar 

  85. 85.

    Aplin, L. M. et al. Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature 518, 538–541 (2015).

    CAS  PubMed  Google Scholar 

  86. 86.

    Costa, G. C. & Schlupp, I. Biogeography of the Amazon molly: ecological niche and range limits of an asexual hybrid species. Glob. Ecol. Biogeogr. 19, 442–451 (2010).

    Google Scholar 

  87. 87.

    Schultz, R. J. in Evolution and Genetics of Life Histories 103–119 (Springer, New York, 1982).

  88. 88.

    Quattro, J. M., Avise, J. C. & Vrijenhoek, R. C. An ancient clonal lineage in the fish genus Poeciliopsis (Atheriniformes: Poeciliidae). Proc. Natl Acad. Sci. USA 89, 348–352 (1992).

    CAS  PubMed  Google Scholar 

  89. 89.

    Bohlen, J. & Ráb, P. Species and hybrid richness in spined loaches of the genus Cobitis (Teleostei: Cobitidae), with a checklist of European forms and suggestions for conservation. J. Fish Biol. 59, 75–89 (2001).

    Google Scholar 

  90. 90.

    Janko, K. et al. Diversity of European spined loaches (genus Cobitis L.): an update of the geographic distribution of the Cobitis taenia hybrid complex with a description of new molecular tools for species and hybrid determination. J. Fish Biol. 71, 387–408 (2007).

    CAS  Google Scholar 

  91. 91.

    Choleva, L., Apostolou, A., Rab, P. & Janko, K. Making it on their own: sperm-dependent hybrid fishes (Cobitis) switch the sexual hosts and expand beyond the ranges of their original sperm donors. Phil. Trans. R. Soc. B 363, 2911–2919 (2008).

    PubMed  Google Scholar 

  92. 92.

    Bogart, J. P., Bi, K., Fu, J., Noble, D. W. & Niedzwiecki, J. Unisexual salamanders (genus Ambystoma) present a new reproductive mode for eukaryotes. Genome 50, 119–136 (2007).

    CAS  PubMed  Google Scholar 

  93. 93.

    Berger, L. in The Reproductive Biology of Amphibians 367–388 (Springer, New York, 1977).

  94. 94.

    Graf, J.-D. & Polls Pelaz, M. in Evolution and Ecology of Unisexual Vertebrates Vol. 466 (eds Dawley, R. M. & Bogart, J. P.) 289–301 (New York State Museum Bulletin, New York, 1989).

  95. 95.

    Taylor, H. L., Cole, C. J., Dessauer, H. C. & Parker, E. Jr. Congruent patterns of genetic and morphological variation in the parthenogenetic lizard Aspidoscelis tesselata (Squamata: Teiidae) and the origins of color pattern classes and genotypic clones in eastern New Mexico. Am. Mus. Novit. 3424, 1–40 (2003).

    Google Scholar 

  96. 96.

    Dessauer, H. C. & Cole, C. J. Evolution and Ecology of Unisexual Vertebrates Vol. 466 (eds Dawley, R. M. & Bogart, J. P.) 49–71 (New York State Museum Bulletin, New York, 1989).

  97. 97.

    Moritz, C. et al. The material ancestry and approximate age of parthenogenetic species of Caucasian rock lizards (Lacerta: Lacertidae). Genetica 87, 53–62 (1992).

    CAS  Google Scholar 

  98. 98.

    Uzzell, T. & Darevsky, I. S. Biochemical evidence for the hybrid origin of the parthenogenetic species of the Lacerta saxicola complex (Sauria: Lacertidae), with a discussion of some ecological and evolutionary implications. Copeia 1975, 204–222 (1975).

    Google Scholar 

  99. 99.

    Reeder, T. W., Cole, C. J. & Dessauer, H. C. Phylogenetic relationships of whiptail lizards of the genus Cnemidophorus (Squamata: Teiidae): a test of monophyly, reevaluation of karyotypic evolution, and review of hybrid origins. Am. Mus. Novit. 3365, 1–61 (2002).

    Google Scholar 

  100. 100.

    Tucker, D. B. et al. Methodological congruence in phylogenomic analyses with morphological support for teiid lizards (Sauria: Teiidae). Mol. Phylogenet. Evol. 103, 75–84 (2016).

    PubMed  Google Scholar 

  101. 101.

    Moritz, C. et al. in Evolution and Ecology of Unisexual Vertebrates Vol. 466 (eds Dawley, R. M. & Bogart, J. P.) 87–112 (New York State Museum Bulletin, New York, 1989).

  102. 102.

    Good, D. & Wright, J. Allozymes and the hybrid origin of the parthenogenetic lizard Cnemidophorus exsanguis. Experientia 40, 1012–1014 (1984).

    Google Scholar 

  103. 103.

    Lutes, A. A., Baumann, D. P., Neaves, W. B. & Baumann, P. Laboratory synthesis of an independently reproducing vertebrate species. Proc. Natl Acad. Sci. USA 108, 9910–9915 (2011).

    CAS  PubMed  Google Scholar 

  104. 104.

    Scharnweber, K., Plath, M., Winemiller, K. O. & Tobler, M. Dietary niche overlap in sympatric asexual and sexual livebearing fishes Poecilia spp. J. Fish Biol. 79, 1760–1773 (2011).

    CAS  PubMed  Google Scholar 

  105. 105.

    Tobler, M. & Schlupp, I. Parasites in sexual and asexual mollies (Poecilia, Poeciliidae, Teleostei): a case for the Red Queen? Biol. Lett. 1, 166–168 (2005).

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Schlupp, I., Marler, C. & Ryan, M. J. Benefit to male sailfin mollies of mating with heterospecific females. Science 263, 373–374 (1994).

    CAS  PubMed  Google Scholar 

  107. 107.

    Vrijenhoek, R. C. Animal clones and diversity. Bioscience 48, 617–628 (1998).

    Google Scholar 

  108. 108.

    Quattro, J. M., Avise, J. C. & Vrijenhoek, R. C. Molecular evidence for multiple origins of hybridogenetic fish clones (Poeciliidae:Poeciliopsis). Genetics 127, 391–398 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Vrijenhoek, R. in Population Biology and Evolution 217–231 (Springer, New York, 1984).

  110. 110.

    Gray, M. M. & Weeks, S. C. Niche breadth in clonal and sexual fish (Poeciliopsis): a test of the frozen niche variation model. Can. J. Fish. Aquat. Sci. 58, 1313–1318 (2001).

    Google Scholar 

  111. 111.

    Semlitsch, R. D., Hotz, H. & Guex, G. D. Competition among tadpoles of coexisting hemiclones of hybridogenetic Rana esculenta: support for the frozen niche variation model. Evolution 51, 1249–1261 (1997).

    PubMed  Google Scholar 

Download references


We thank M. Schartl and I. Schlupp for constructive conversations. This work was supported in part by the Deutsche Forschungsgemeinschaft (Grant LA 3778/1-1 to K.L.L.; grant BI 1828/2-1 to D.B.) and the Alexander von Humboldt Foundation (Postdoctoral Fellowship to C.D.).

Author information




K.L.L., M.W. and J.K. conceived the idea for the manuscript. K.L.L. wrote the initial draft. All authors substantially contributed to revisions and editing of manuscript.

Corresponding author

Correspondence to Kate L. Laskowski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Laskowski, K.L., Doran, C., Bierbach, D. et al. Naturally clonal vertebrates are an untapped resource in ecology and evolution research. Nat Ecol Evol 3, 161–169 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing