Phenotypic and genome-wide association with the local environment of Arabidopsis


The environment imposes critical selective forces on all living organisms, and the sessile nature of plants makes them particularly useful for investigating the relationship between genetic variation and environmental adaptation. In the model plant Arabidopsis thaliana, extensive information on phenotypic and genotypic variation is available, but comparable information on environmental variation within the native range of the species is lacking. Here, we compile 204 geoclimatic variables to describe the local environments of Arabidopsis accessions with known collection sites encompassing a wide geo-environmental range, and fully sequenced genomes from the 1001 Genomes Project. We identify candidate adaptive genetic variation associated with these environmental variables, and validate this approach through comparison with previous experimental studies, and by targeted confirmation of a role of the heterotrimeric G-protein γ subunit, AGG3, in cold tolerance, as newly predicted from our environmental genome wide association study (GWAS). To facilitate identification of adaptive variation, we created Arabidopsis CLIMtools: interactive web-based databases of the environment × genome associations and correlations between the local environments and 131 phenotypes compiled from previous experimental GWASs. Our study presents an extensive analysis of the local environments, landscape genomics and phenotypic variation of Arabidopsis, and illustrates how ‘in silico GWAS’ approaches can inform and complement experimental phenomics studies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Global accession distributions, data sources and environmental categories relating to this study.
Fig. 2: Associations between longitude and genetic variation in PHYB and AG, and between ultraviolet radiation and variation in SPA2.
Fig. 3: Associations between genetic variation in heterotrimeric G-protein subunits and the local environment.
Fig. 4: Examples of previously unknown associations between genetic variants and local environments.
Fig. 5: Examples of associations between previously published phenotypes, which were found using PhenoCLIM, and the environmental variables that we introduce.
Fig. 6: Correlations among the environmental variables presented in this study for the set of 196 environmental variables with continuous values.

Data availability

Summary statistics for each of the 204 environmental and 131 phenotypic variables (Supplementary Table 1) used in this study were produced using the package skimr115 in R90. To ensure the complete reproducibility of this study, the raw data used for the curated environmental and phenotypic variables described here are available in a public repository (, along with the code for the respective interactive web tools.


  1. 1.

    Meinke, D. W., Cherry, J. M., Dean, C., Rounsley, S. D. & Koornneef, M. Arabidopsis thaliana: a model plant for genome analysis. Science 282, 662–682 (1998).

    CAS  PubMed  Google Scholar 

  2. 2.

    Rédei, G. P. Arabidopsis as a genetic tool. Annu. Rev. Genet. 9, 111–127 (1975).

    PubMed  Google Scholar 

  3. 3.

    Meyerowitz, E. M. Prehistory and history of Arabidopsis research. Plant Physiol. 125, 15–19 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Somerville, C. & Koornneef, M. A fortunate choice: the history of Arabidopsis as a model plant. Nat. Rev. Genet. 3, 883–889 (2002).

    CAS  PubMed  Google Scholar 

  5. 5.

    Meyerowitz, E. M. Arabidopsis thaliana. Annu. Rev. Genet. 21, 93–111 (1987).

    CAS  PubMed  Google Scholar 

  6. 6.

    Zhang, J. Z., Creelman, R. A. & Zhu, J.-K. From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol. 135, 615–621 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Rensink, W. A. & Buell, C. R. Arabidopsis to rice. Applying knowledge from a weed to enhance our understanding of a crop species. Plant Physiol. 135, 622–629 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Zhu, M. et al. Molecular and systems approaches towards drought-tolerant canola crops. New Phytol. 210, 1169–1189 (2016).

    CAS  PubMed  Google Scholar 

  9. 9.

    Mitchell-Olds, T. & Schmitt, J. Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441, 947–952 (2006).

    CAS  PubMed  Google Scholar 

  10. 10.

    Pigliucci, M. Ecology and evolutionary biology of Arabidopsis. Arabidopsis Book 1, e0003 (2002).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Shindo, C., Bernasconi, G. & Hardtke, C. S. Natural genetic variation in Arabidopsis: tools, traits and prospects for evolutionary ecology. Ann. Bot. 99, 1043–1054 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Tonsor, S. J., Alonso-Blanco, C. & Koornneef, M. Gene function beyond the single trait: natural variation, gene effects, and evolutionary ecology in Arabidopsis thaliana. Plant Cell Environ. 28, 2–20 (2005).

    CAS  Google Scholar 

  13. 13.

    Trontin, C., Tisné, S., Bach, L. & Loudet, O. What does Arabidopsis natural variation teach us (and does not teach us) about adaptation in plants? Curr. Opin. Plant Biol. 14, 225–231 (2011).

    PubMed  Google Scholar 

  14. 14.

    Ågren, J. & Schemske, D. W. Reciprocal transplants demonstrate strong adaptive differentiation of the model organism Arabidopsis thaliana in its native range. New Phytol. 194, 1112–1122 (2012).

    PubMed  Google Scholar 

  15. 15.

    Alonso-Blanco, C. et al. 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166, 481–491 (2016).

    Google Scholar 

  16. 16.

    Hoffmann, M. H. Biogeography of Arabidopsis thaliana (L.) Heynh. (Brassicaceae). J. Biogeogr. 29, 125–134 (2002).

    Google Scholar 

  17. 17.

    Hoffmann, M. H. Evolution of the realized climatic niche in the genus Arabidopsis (Brassicaceae). Evolution 59, 1425–1436 (2005).

    PubMed  Google Scholar 

  18. 18.

    Durvasula, A. et al. African genomes illuminate the early history and transition to selfing in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 114, 5213–5218 (2017).

    CAS  PubMed  Google Scholar 

  19. 19.

    Weigel, D. & Mott, R. The 1001 Genomes Project for Arabidopsis thaliana. Genome Biol. 10, 107 (2009).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    De Villemereuil, P., Gaggiotti, O. E., Mouterde, M. & Till-Bottraud, I. Common garden experiments in the genomic era: new perspectives and opportunities. Heredity 116, 249–254 (2016).

    CAS  PubMed  Google Scholar 

  21. 21.

    Woodward, F. I. Climate and Plant Distribution (Cambridge Univ. Press, 1987).

  22. 22.

    Horton, M. W. et al. Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel. Nat. Genet. 44, 212–216 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Hancock, A. M. et al. Adaptation to climate across the Arabidopsis thaliana genome. Science 334, 83–86 (2011).

    CAS  PubMed  Google Scholar 

  24. 24.

    Lasky, J. R. et al. Characterizing genomic variation of Arabidopsis thaliana: the roles of geography and climate. Mol. Ecol. 21, 5512–5529 (2012).

    PubMed  Google Scholar 

  25. 25.

    Korte, A. & Farlow, A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9, 29 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Segura, V. et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat. Genet. 44, 825–830 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Lasky, J. R. et al. Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana. Mol. Biol. Evol. 31, 2283–2296 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Coop, G., Witonsky, D., Di Rienzo, A. & Pritchard, J. K. Using environmental correlations to identify loci underlying local adaptation. Genetics 185, 1411–1423 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Seren, Ü. et al. AraPheno: a public database for Arabidopsis thaliana phenotypes. Nucleic Acids Res. 45, D1054–D1059 (2017).

    CAS  PubMed  Google Scholar 

  30. 30.

    Chia‐Yi, C. et al. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 89, 789–804 (2017).

    Google Scholar 

  31. 31.

    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Gibson, G. Rare and common variants: twenty arguments. Nat. Rev. Genet. 13, 135–145 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Kryukov, G. V., Pennacchio, L. A. & Sunyaev, S. R. Most rare missense alleles are deleterious in humans: implications for complex disease and association studies. Am. J. Hum. Genet. 80, 727–739 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Gorlov, I. P., Gorlova, O. Y., Sunyaev, S. R., Spitz, M. R. & Amos, C. I. Shifting paradigm of association studies: value of rare single-nucleotide polymorphisms. Am. J. Hum. Genet. 82, 100–112 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Li, Y. et al. Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants. Nat. Genet. 42, 969–972 (2010).

    CAS  PubMed  Google Scholar 

  36. 36.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  37. 37.

    Weigel, D. & Glazebrook, J. Arabidopsis: A Laboratory Manual 165 (Cold Spring Harbor Laboratory Press, 2002).

  38. 38.

    Jones, P. & Harris, I. CRU TS3. 21: Climatic Research Unit (CRU) Time-Series (TS) Version 3.21 of High Resolution Gridded Data of Month-by-Month Variation in Climate (Jan. 1901–Dec. 2012) (NCAS British Atmospheric Data Centre, 2013).

  39. 39.

    Atwell, S. et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465, 627–631 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Heinsch, F. A. et al. User’s Guide GPP and NPP (MOD17A2/A3) Products NASA MODIS Land Algorithm 1–57 (MODIS Land Team, 2003).

  41. 41.

    Grimm, D. G. et al. easyGWAS: a cloud-based platform for comparing the results of genome-wide association studies. Plant Cell 29, 5–19 (2017).

    CAS  PubMed  Google Scholar 

  42. 42.

    Seren, Ü. et al. GWAPP: a web application for genome-wide association mapping in Arabidopsis. Plant Cell 24, 4793–4805 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).

    CAS  Google Scholar 

  44. 44.

    Storey, J. D. A direct approach to false discovery rates. J. R. Stat. Soc. B 64, 479–498 (2002).

    Google Scholar 

  45. 45.

    Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).

    CAS  Google Scholar 

  46. 46.

    Samis, K. E., Heath, K. D. & Stinchcombe, J. R. Discordant longitudinal clines in flowering time and PHYTOCHROME C in Arabidopsis thaliana. Evolution 62, 2971–2983 (2008).

    CAS  PubMed  Google Scholar 

  47. 47.

    Blázquez, M. A. & Weigel, D. Independent regulation of flowering by phytochrome B and gibberellins in Arabidopsis. Plant Physiol. 120, 1025–1032 (1999).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Endo, M., Tanigawa, Y., Murakami, T., Araki, T. & Nagatani, A. PHYTOCHROME-DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS. Proc. Natl Acad. Sci. USA 110, 18017–18022 (2013).

    CAS  PubMed  Google Scholar 

  49. 49.

    Bowman, J. L., Smyth, D. R. & Meyerowitz, E. M. Genes directing flower development in Arabidopsis. Plant Cell 1, 37–52 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Parcy, F., Bomblies, K. & Weigel, D. Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis. Development 129, 2519–2527 (2002).

    CAS  PubMed  Google Scholar 

  51. 51.

    Laubinger, S., Fittinghoff, K. & Hoecker, U. The SPA quartet: a family of WD-repeat proteins with a central role in suppression of photomorphogenesis in Arabidopsis. Plant Cell 16, 2293–2306 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Tanskanen, A., Krotkov, N. A., Herman, J. R. & Arola, A. Surface ultraviolet irradiance from OMI. IEEE. Trans. Geosci. Remote Sens. 44, 1267–1271 (2006).

    Google Scholar 

  53. 53.

    Heijde, M. et al. Constitutively active UVR8 photoreceptor variant in Arabidopsis. Proc. Natl Acad. Sci. USA 110, 20326–20331 (2013).

    CAS  PubMed  Google Scholar 

  54. 54.

    Chen, S., Lory, N., Stauber, J. & Hoecker, U. Photoreceptor specificity in the light-induced and COP1-mediated rapid degradation of the repressor of photomorphogenesis SPA2 in Arabidopsis. PLoS Genet. 11, e1005516 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Favory, J. J. et al. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J. 28, 591–601 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Wang, X.-Q., Ullah, H., Jones, A. M. & Assmann, S. M. G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292, 2070–2072 (2001).

    CAS  PubMed  Google Scholar 

  57. 57.

    Yu, Y. & Assmann, S. M. The heterotrimeric G-protein β subunit, AGB1, plays multiple roles in the Arabidopsis salinity response. Plant Cell Environ. 38, 2143–2156 (2015).

    CAS  PubMed  Google Scholar 

  58. 58.

    Ferrero-Serrano, Á. & Assmann, S. M. The α-subunit of the rice heterotrimeric G protein, RGA1, regulates drought tolerance during the vegetative phase in the dwarf rice mutant d1. J. Exp. Bot. 67, 3433–3443 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Ferrero-Serrano, Á., Su, Z. & Assmann, S. M. Illuminating the role of the Gα heterotrimeric G protein subunit, RGA1, in regulating photoprotection and photoavoidance in rice. Plant Cell Environ. 41, 451–468 (2018).

    CAS  PubMed  Google Scholar 

  60. 60.

    Urano, D., Chen, J. G., Botella, J. R. & Jones, A. M. Heterotrimeric G protein signalling in the plant kingdom. Open Biol. 3, 120186 (2013).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Ma, H., Yanofsky, M. F. & Meyerowitz, E. M. Molecular cloning and characterization of GPA1, a G protein alpha subunit gene from Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 87, 3821–3825 (1990).

    CAS  PubMed  Google Scholar 

  62. 62.

    Chakravorty, D. & Gookin, T. E. Extra-large G proteins expand the repertoire of subunits in Arabidopsis heterotrimeric G protein signaling. Plant Physiol. 169, 512–529 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Weiss, C. A., Garnaat, C. W., Mukai, K., Hu, Y. & Ma, H. Isolation of cDNAs encoding guanine nucleotide-binding protein beta-subunit homologues from maize (ZGB1) and Arabidopsis (AGB1). Proc. Natl Acad. Sci. USA 91, 9554–9558 (1994).

    CAS  PubMed  Google Scholar 

  64. 64.

    Mason, M. G. & Botella, J. R. Completing the heterotrimer: isolation and characterization of an Arabidopsis thaliana G protein gamma-subunit cDNA. Proc. Natl Acad. Sci. USA 97, 14784–14788 (2000).

    CAS  PubMed  Google Scholar 

  65. 65.

    Mason, M. G. & Botella, J. R. Isolation of a novel G-protein gamma-subunit from Arabidopsis thaliana and its interaction with Gbeta. Biochim. Biophys. Acta 1520, 147–153 (2001).

    CAS  PubMed  Google Scholar 

  66. 66.

    Chakravorty, D. et al. An atypical heterotrimeric G-protein γ-subunit is involved in guard cell K+-channel regulation and morphological development in Arabidopsis thaliana. Plant J. 67, 840–851 (2011).

    CAS  PubMed  Google Scholar 

  67. 67.

    Platt, A., Vilhjalmsson, B. J. & Nordborg, M. Conditions under which genome-wide association studies will be positively misleading. Genetics 186, 1045–1052 (2010).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Vilhjalmsson, B. J. & Nordborg, M. The nature of confounding in genome-wide association studies. Nat. Rev. Genet. 14, 1–2 (2012).

    PubMed  Google Scholar 

  69. 69.

    Campbell, C. D. et al. Demonstrating stratification in a European American population. Nat. Genet. 37, 868–872 (2005).

    CAS  PubMed  Google Scholar 

  70. 70.

    Lander, E. S. & Schork, N. J. Genetic dissection of complex traits. Science 265, 2037–2048 (1994).

    CAS  PubMed  Google Scholar 

  71. 71.

    Hey, J. & Machado, C. A. The study of structured populations—new hope for a difficult and divided science. Nat. Rev. Genet. 4, 535–543 (2003).

    CAS  PubMed  Google Scholar 

  72. 72.

    Zhao, K. et al. An Arabidopsis example of association mapping in structured samples. PLoS Genet. 3, e4 (2007).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Yu, J. et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38, 203–208 (2006).

    CAS  PubMed  Google Scholar 

  74. 74.

    Amasino, R. M. & Michaels, S. D. The timing of flowering. Plant Physiol. 154, 516–520 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Blázquez, M. A., Ahn, J. H. & Weigel, D. A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat. Genet. 33, 168–171 (2003).

    PubMed  Google Scholar 

  76. 76.

    Koornneef, M., Alonso-Blanco, C. & Vreugdenhil, D. Naturally occurring genetic variation in Arabidopsis thaliana. Annu. Rev. Plant Biol. 55, 141–172 (2004).

    CAS  PubMed  Google Scholar 

  77. 77.

    Li, B., Suzuki, J. I. & Hara, T. Latitudinal variation in plant size and relative growth rate in Arabidopsis thaliana. Oecologia 115, 293–301 (1998).

    PubMed  Google Scholar 

  78. 78.

    Weaver, D. J. & Wehunt, E. J. Effect of soil pH on susceptibility of peach to Pseudomonas syringae. Phytopathology 65, 984–989 (1975).

    Google Scholar 

  79. 79.

    Kawakatsu, T. et al. Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell 166, 492–505 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Dubin, M. J. et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. eLife 4, e05255 (2015).

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Boyer, J. S. Plant productivity and environment. Science 218, 443–448 (1982).

    CAS  PubMed  Google Scholar 

  82. 82.

    Assmann, S. M. Natural variation in abiotic stress and climate change responses in Arabidopsis: implications for twenty-first-century agriculture. Int. J. Plant Sci. 174, 3–26 (2013).

    CAS  Google Scholar 

  83. 83.

    Cox, D. B. T. et al. RNA editing with CRISPR–Cas13. Science 358, 1019–1027 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Lasky, J. R. et al. Genome–environment associations in sorghum landraces predict adaptive traits. Sci. Adv. 1, e1400218 (2015).

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Google Scholar 

  87. 87.

    Hijmans, R. J. raster: Geographic Data Analysis and Modeling R package version 2.5-8 (2016);

  88. 88.

    Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5, 9–13 (2005).

    Google Scholar 

  89. 89.

    Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the Geospatial Data Abstraction Library R package version 1. 2–15 (2017).

  90. 90.

    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).

  91. 91.

    Galili, T. heatmaply: Interactive Cluster Heat Maps Using ‘plotly’ R package version 0.6. 0 (2016).

  92. 92.

    Chang, W., Cheng, J., Allaire, J. J., Xie, Y. & McPherson, J. shiny: Web Application Framework for R R package version 1.0.5. 1 (2017);

  93. 93.

    Cheng, J. & Xie, Y. leaflet: Create Interactive Web Maps with the JavaScript ‘Leaflet’ Library R package version 1.0.1 (2017).

  94. 94.

    Chang, W. & Wickham, H. ggvis: Interactive Grammar of Graphics R package version 0.4.3 (2016).

  95. 95.

    Xie, Y. DT: a Wrapper of the JavaScript Library ‘DataTables’ R package version 0.1 (2015);

  96. 96.

    Dabbish, L., Stuart, C., Tsay, J. & Herbsleb, J. Social coding in GitHub: transparency and collaboration in an open software repository. In Proc. ACM 2012 Conference on Computer Supported Cooperative Work 1277–1286 (ACM, 2012).

  97. 97.

    Platt, A. et al. The scale of population structure in Arabidopsis thaliana. PLoS Genet. 6, e1000843 (2010).

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Anastasio, A. E. et al. Source verification of mis-identified Arabidopsis thaliana accessions. Plant J. 67, 554–566 (2011).

    CAS  PubMed  Google Scholar 

  99. 99.

    Pisupati, R. et al. Verification of Arabidopsis stock collections using SNPmatch—an algorithm for genotyping high-plexed samples. Preprint at (2017).

  100. 100.

    Price, A. L., Zaitlen, N. A., Reich, D. & Patterson, N. New approaches to population stratification in genome-wide association studies. Nat. Rev. Genet. 11, 459–463 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Blair, L. M., Granka, J. M. & Feldman, M. W. On the stability of the Bayenv method in assessing human SNP–environment associations. Hum. Genomics 8, 1 (2014).

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Keller, S. R., Levsen, N., Olson, M. S. & Tiffin, P. Local adaptation in the flowering-time gene network of balsam poplar, Populus balsamifera L. Mol. Biol. Evol. 29, 3143–3152 (2012).

    CAS  PubMed  Google Scholar 

  103. 103.

    Abebe, T. D., Naz, A. A. & Leon, J. Landscape genomics reveal signatures of local adaptation in barley (Hordeum vulgare L.). Front. Plant Sci. 6, 813 (2015).

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Ziegler, G. R., Hartsock, R. H. & Baxter, I. Zbrowse: an interactive GWAS results browser. PeerJ Comput. Sci. 1, e3 (2015).

    Google Scholar 

  106. 106.

    Storey, J. D. The positive false discovery rate: a Bayesian interpretation and the q-value. Ann. Stat. 31, 2013–2035 (2003).

    Google Scholar 

  107. 107.

    Storey, J. D., Taylor, J. E. & Siegmund, D. Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. J. R. Stat. Soc. B 66, 187–205 (2004).

    Google Scholar 

  108. 108.

    Ma, H. GTP-binding proteins in plants: new members of an old family. Plant Mol. Biol. 26, 1611–1636 (1994).

    CAS  PubMed  Google Scholar 

  109. 109.

    Chakravorty, D., Gookin, T. E., Milner, M., Yu, Y. & Assmann, S. M. Extra-large G proteins expand the repertoire of subunits in Arabidopsis heterotrimeric G protein signaling. Plant Physiol. 169, 512–529 (2015).

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Boyes, D. C. et al. Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13, 1499–1510 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Wickham, H., Francois, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation R package version 0.7.4 (2017).

  112. 112.

    Turner, S. D. qqman: an R package for visualizing GWAS results using QQ and Manhattan plots. Preprint at (2014).

  113. 113.

    Kahle, D. & Wickham, H. ggmap: spatial visualization with ggplot2. R J. 5, 144–161 (2013).

    Google Scholar 

  114. 114.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  115. 115.

    McNamara, A., Arino, E. & Zhu, H. skimr: Compact and Flexible Summaries of Data R package version 1.0.1 (2018).

Download references


We thank J. R. Lasky, S. Mackenzie and P. C. Bevilacqua for helpful comments on an early version of this manuscript. We also thank D. C. Tack for bioinformatic assistance. This work was supported by an Agriculture and Food Research Initiative competitive grant (2013–02379) from the USDA National Institute of Food and Agriculture (to S.M.A.) and by NSF grant IOS-1339282 (to S.M.A. and P. C. Bevilacqua).

Author information




S.M.A. and A.F.-S. conceived and designed the study. A.F.-S. performed the spatial data analysis, bioinformatics, data collection and statistical analyses. A.F.-S. was responsible for the web tools development. A.F.-S. conducted the wet-bench experiments and generated the data. S.M.A. provided critical comments on data analysis, collection and interpretation. A.F.-S. and S.M.A. wrote the manuscript.

Corresponding authors

Correspondence to Ángel Ferrero-Serrano or Sarah M. Assmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–3 and Supplementary Discussion

Reporting Summary

Supplementary Figure 4

Interactive hierarchical cluster plot 1

Supplementary Figure 5

Interactive hierarchical cluster plot 2

Supplementary Table 1

Description of the environmental and phenotypic variables used in this study

Supplementary Table 2

Curation details for the 1,131 geo-referenced accessions

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferrero-Serrano, Á., Assmann, S.M. Phenotypic and genome-wide association with the local environment of Arabidopsis. Nat Ecol Evol 3, 274–285 (2019).

Download citation

Further reading