Article | Published:

An early Aurignacian arrival in southwestern Europe

Abstract

Westernmost Europe constitutes a key location in determining the timing of the replacement of Neanderthals by anatomically modern humans (AMHs). In this study, the replacement of late Mousterian industries by Aurignacian ones at the site of Bajondillo Cave (Málaga, southern Spain) is reported. On the basis of Bayesian analyses, a total of 26 radiocarbon dates, including 17 new ones, show that replacement at Bajondillo took place in the millennia centring on ~45–43 calibrated thousand years before the present (cal ka bp)—well before the onset of Heinrich event 4 (~40.2–38.3 cal ka bp). These dates indicate that the arrival of AMHs at the southernmost tip of Iberia was essentially synchronous with that recorded in other regions of Europe, and significantly increases the areal expansion reached by early AMHs at that time. In agreement with human dispersal scenarios on other continents, such rapid expansion points to coastal corridors as favoured routes for early AMH. The new radiocarbon dates align Iberian chronologies with AMH dispersal patterns in Eurasia.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The described archaeological collections are housed at Museo Arqueológico de Málaga, Spain.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Hublin, J. J. The modern human colonization of western Eurasia: when and where? Quat. Sci. Rev. 118, 194–210 (2015).

  2. 2.

    Bae, C. J. et al. On the origin of modern humans: Asian perspectives. Science 358, eaai9067 (2017).

  3. 3.

    Banks, W. E. et al. Neanderthal extinction by competitive exclusion. PLoS ONE 3, e3972 (2008).

  4. 4.

    Stringer, C. et al. in Neanderthals and Moderns Humans in the European Landscape During the Last Glaciation: Archaeological Results of the Stage 3 Project (eds van Andel, T. H. & Davies, W.) 233–240 (Univ. Cambridge, Cambridge, 2003).

  5. 5.

    Giaccio, B. et al. High-precision 14C and 40Ar/39Ar dating of the Campanian Ignimbrite (Y-5) reconciles the time-scales of climatic-cultural processes at 40 ka. Sci. Rep. 7, 45940 (2017).

  6. 6.

    Higham, T. et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306–309 (2014).

  7. 7.

    Bicho, N. et al. Early Upper Paleolithic colonization across Europe: time and mode of the Gravettian diffusion. PLoS ONE 12, e0178506 (2017).

  8. 8.

    Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

  9. 9.

    Peresani, M. et al. The Uluzzian technology of Grotta di Fumane and its implication for reconstructing cultural dynamics in the Middle–Upper Palaeolithic transition of Western Eurasia. J. Hum. Evol. 91, 36–56 (2016).

  10. 10.

    Douka, K. et al. On the chronology of the Uluzzian. J. Hum. Evol. 68, 1–13 (2014).

  11. 11.

    Finlayson, C. et al. Late survival of Neanderthals at the southernmost extreme of Europe. Nature 443, 850–853 (2006).

  12. 12.

    Zilhão, J. et al. Precise dating of the Middle-to-Upper Paleolithic transition in Murcia (Spain) supports late Neandertal persistence in Iberia. Heliyon 3, e00435 (2017).

  13. 13.

    Cortés-Sánchez, M. in Cueva Bajondillo (Torremolinos). Secuencia cronocultural y paleoambiental del Cuaternario reciente en la Bahía de Málaga (ed. Cortés-Sánchez, M.) 93–138 (CEDMA, Málaga, 2007).

  14. 14.

    Cortés-Sánchez, M. et al. Earliest known use of marine resources by Neanderthals. PLoS ONE 6, e24026 (2011).

  15. 15.

    Barroso Ruiz, C. & de Lumley, H. La grotte du Boquete de Zafarraya: Málaga, Andalousie (Junta de Andalucía, Consejería de Cultura, Sevilla, 2006).

  16. 16.

    Morales, J. I. et al. Expanding the geography of the Middle to Upper Palaeolithic transition: Foradada Cave (Calafell, Spain), a new site on the Iberian Mediterranean coastline. Antiquity 351, 1–4 (2016).

  17. 17.

    Villaverde, V. et al. The early Upper Palaeolithic of Cova de les Cendres (Alicante, Spain). Quat. Int. (in the press).

  18. 18.

    Tafelmaier, Y. Technological Variability at the Beginning of the Aurignacian: Implications for the Proto- and Early Aurignacian Distinction (Neanderthal Museum, Mettmann, 2017).

  19. 19.

    Bataille, G. et al. Living on the edge—a comparative approach for studying the beginning of the Aurignacian. Quat. Int. 474, 1–98 (2018).

  20. 20.

    Albert, R. in Cueva Bajondillo (Torremolinos). Secuencia cronocultural y paleoambiental del Cuaternario reciente en la Bahía de Málaga (ed. Cortés-Sánchez, M.) 491–500 (CEDMA, Málaga, 2007).

  21. 21.

    Ramos Fernández, J. et al. Dating of the Middle to Upper Paleolithic transition at the Abrigo 3 del Humo (Málaga, Spain). Mainake XXXIII, 275–284 (2012).

  22. 22.

    Wood, R. E. et al. Radiocarbon dating casts doubt on the late chronology of the Middle to Upper Palaeolithic transition in southern Iberia. Proc. Natl Acad. Sci. USA 110, 2781–2786 (2013).

  23. 23.

    Douka, K. et al. A new chronostratigraphic framework for the Upper Palaeolithic of Riparo Mochi (Italy). J. Hum. Evol. 62, 286–299 (2012).

  24. 24.

    Nigst, P. R. et al. Early modern human settlement of Europe north of the Alps occurred 43,500 years ago in a cold steppe-type environment. Proc. Natl Acad. Sci. USA 111, 14394–14399 (2014).

  25. 25.

    Marin-Arroyo, A. et al. Chronological reassessment of the Middle to Upper Paleolithic transition and Early Upper Paleolithic cultures in Cantabrian Spain. PLoS ONE 13, e0194708 (2018).

  26. 26.

    Wolf, D. et al. Climate deteriorations and Neanderthal demise in interior Iberia. Sci. Rep. 8, 7048 (2018).

  27. 27.

    Wood, R. E. et al. The chronology of the earliest Upper Palaeolithic in northern Iberia: new insights from L’Arbreda, Labeko Koba and La Viña. J. Hum. Evol. 69, 91–109 (2014).

  28. 28.

    Higham, T. F. G. et al. The earliest evidence for anatomically modern humans in northwestern Europe. Nature 479, 521–524 (2011).

  29. 29.

    Zilhão, J. Pego do Diabo (Loures, Portugal): dating the emergence of anatomical modernity in westernmost Eurasia. PLoS ONE 5, e8880 (2010).

  30. 30.

    Higham, T. F. G. et al. Testing models for the beginnings of the Aurignacian and the advent of figuratuve art and music: the radiocarbon chronology of Geißenklösterle. J. Hum. Evol. 62, 664–676 (2012).

  31. 31.

    Douka, K. et al. The chronostratigraphy of the Haua Fteah cave (Cyrenaica, northeast Libya). J. Hum. Evol. 66, 39–63 (2014).

  32. 32.

    Barton, R. N. E. et al. Rethinking the Human Revolution: New Behavioural and Biological Perspectives on the Origins and Dispersal of Modern Humans (eds Mellars, P., Boyle, K., Bar-Yosef, O. & Stringer, C.) 177–186 (McDonald Institute, Cambridge, 2007).

  33. 33.

    Ramos, J. et al. The Benzú rockshelter: a Middle Palaeolithic site on the North African coast. Quat. Sci. Rev. 27, 2210–2218 (2008).

  34. 34.

    Hublin, J.-J. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017).

  35. 35.

    Pearce, D. G. & Bonneau, A. Trouble on the dating scene. Nat. Ecol. Evol. 2, 925–926 (2018).

  36. 36.

    Burke, A. et al. Risky business: the impact of climate and climate variability on human population dynamics in Western Europe during the Last Glacial Maximum. Quat. Sci. Rev. 164, 217–229 (2017).

  37. 37.

    Groucutt, H. S. et al. Homo sapiens in Arabia by 85,000 years ago. Nat. Ecol. Evol. 2, 800–809 (2018).

  38. 38.

    Clarkson, C. et al. Human occupation of northern Australia by 65,000 years ago. Nature 547, 306–310 (2017).

  39. 39.

    Veth, P. et al. Early human occupation of a maritime desert, Barrow Island, North-West Australia. Quat. Sci. Rev. 168, 19–29 (2017).

  40. 40.

    Llamas, B. et al. Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas. Sci. Adv. 2, e1501385 (2016).

  41. 41.

    Haws, J. A. et al. Coastal wetlands and the Neanderthal settlement of Portuguese Estremadura. Geoarchaeology 25, 709–744 (2010).

  42. 42.

    Kolodny, O. & Feldman, M. W. A parsimonious neutral model suggests Neanderthal replacement was determined by migration and random species drift. Nat. Comm. 8, 1040 (2017).

  43. 43.

    Mateja Hajdinjak et al. Reconstructing the genetic history of late Neanderthals. Nature 555, 652–656 (2018).

  44. 44.

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon 55, 1869–1887 (2013).

  45. 45.

    Ramsey, C. B. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

  46. 46.

    Ehlers, J., Gibbard, P. L. & Hughes, P. D. Quaternary Glaciations—Extent and Chronology: A Closer Look Vol. 15 (Elsevier, Amsterdam, 2011).

  47. 47.

    Martrat, B. et al. Four climate cycles of recurring deep and surface water destabilizations on the Iberian Margin. Science 317, 502–507 (2007).

  48. 48.

    Sanchez-Goñi, M. F. & Harrison, S. P. Millennial-scale climate variability and vegetation changes during the Last Glacial: concepts and terminology. Quat. Sci. Rev. 29, 2823–2827 (2010).

  49. 49.

    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).

  50. 50.

    Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744–747 (2012).

Download references

Acknowledgements

M.C.-S. was provided access by the Consejería de Cultura of the Junta de Andalucía (Spain) to analyse the Bajondillo Cave fauna (UPPH/49/06). The research was sponsored by grants HAR2013-44269-P and HAR 2016-77789-P from the Spanish Ministerio de Economía y Competitividad. A.G.-A. acknowledges a Ramón y Cajal Fellowship (RYC-2015-18966) of the Spanish Government (Ministerio de Economía y Competitividad).The research of C.S. is supported by the Calleva Foundation and Human Origins Research Fund. The paper constitutes contributions from the HUM-949 Research Group (Universidad de Sevilla, Spain) and ICArEHB (University of Algarve, Portugal).

Author information

M.C.-S., F.J.J.-E., A.M.-M. and C.S. conceived and designed the experiments and wrote the manuscript. All authors analysed the data. M.C.-S., M.D.S.-V., C.P.O. and J.A.R.-C. performed the archaeology and lithic technology. A.M.-M. performed the archaeozoology. R.P.G., A.M.G. and F.J.J.-E. produced the figures and palaeoreconstruction. A.G.-A. and N.O. performed the geochronology. M.C.L.F. and J.L.V.P. performed the archaeomalacology.

Competing interests

The authors declare no competing interests.

Correspondence to Francisco J. Jiménez-Espejo.

Supplementary information

Supplementary Information

Supplementary Tables, Figures, Discussion and References

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Selected archaeological sites in western Europe and North Africa.
Fig. 2: Representative lithic industries from Bajondillo site archaeological levels Bj/14–Bj/11.
Fig. 3: Comparison between the chronologies of the different archaeological levels at Bajondillo Cave and a selection of palaeoenvironmental proxies.