Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Biodiversity enhances coral growth, tissue survivorship and suppression of macroalgae

Abstract

Coral reefs are declining dramatically and losing species richness, but the impact of declining biodiversity on coral well-being remains inadequately understood. Here, we demonstrate that lower coral species richness alone can suppress the growth and survivorship of multiple species of corals (Porites cylindrica, Pocillopora damicornis and Acropora millepora) under field conditions on a degraded, macroalgae-dominated reef. Our findings highlight the positive role of biodiversity in the function of coral reefs, and suggest that the loss of coral species richness may trigger negative feedback that causes further ecosystem decline.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Coral monoculture and polyculture plots in the field, where growth was commonly enhanced in polycultures versus monocultures.
Fig. 2: Coral tissue mortality and macroalgal cover in polycultures versus monocultures.

Similar content being viewed by others

Data availability

Datasets used in this study are available online from the BCO-DMO data system (http://bco-dmo.org/).

References

  1. Naeem, S., Duffy, J. E. & Zavaleta, E. Science 336, 1401–1406 (2012).

    CAS  PubMed  Google Scholar 

  2. Hooper, D. U. et al. Nature 486, 105–108 (2012).

    CAS  PubMed  Google Scholar 

  3. Bellwood, D. R., Hughes, T. P., Folke, C. & Nystrom, M. Nature 429, 827–833 (2004).

    CAS  PubMed  Google Scholar 

  4. Mumby, P. J. & Steneck, R. S. Trends Ecol. Evol. 23, 555–563 (2008).

    PubMed  Google Scholar 

  5. Connell, J. H. Science 199, 1302–1310 (1978).

    CAS  PubMed  Google Scholar 

  6. Hoegh-Guldberg, O. et al. Science 318, 1737–1742 (2007).

    CAS  PubMed  Google Scholar 

  7. Hughes, T. P. et al. Nature 543, 373–377 (2017).

    CAS  PubMed  Google Scholar 

  8. Holbrook, S. J. et al. PLoS ONE 10, e0124054 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. Messmer, V. et al. Ecology 92, 2285–2298 (2011).

    PubMed  Google Scholar 

  10. Romeo, M. D. & Helen, T. Y. Mar. Ecol. Prog. Ser. 296, 165–172 (2005).

    Google Scholar 

  11. Cabaitan, P. C., Yap, H. T. & Gomez, E. D. Restor. Ecol. 23, 349–356 (2015).

    Google Scholar 

  12. Zhang, S. Y. et al. PeerJ 2, e308 (2014).

    PubMed  PubMed Central  Google Scholar 

  13. Wellington, G. M. Oecologia 47, 340–343 (1980).

    PubMed  Google Scholar 

  14. Clements, C. S., Rasher, D. B., Hoey, A. S., Bonito, V. E. & Hay, M. E. Mar. Ecol. Prog. Ser. 586, 11–20 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rasher, D. B., Hoey, A. S. & Hay, M. E. Ecology 94, 1347–1358 (2013).

    PubMed  PubMed Central  Google Scholar 

  16. Stachowicz, J. J., Bruno, J. F. & Duffy, J. E. Annu. Rev. Ecol. Evol. Syst. 38, 739–766 (2007).

    Google Scholar 

  17. Hooper, D. U. et al. Ecol. Monogr. 75, 3–35 (2005).

    Google Scholar 

  18. Dullo, W. C. Facies 51, 33–48 (2005).

    Google Scholar 

  19. Nugues, M. M. & Bak, R. P. M. Mar. Ecol. Prog. Ser. 315, 75–86 (2006).

    Google Scholar 

  20. Edwards, K. F., Aquilino, K. M., Best, R. J., Sellheim, K. L. & Stachowicz, J. J. Ecol. Lett. 13, 194–201 (2010).

    PubMed  Google Scholar 

  21. Civitello, D. J. et al. Proc. Natl Acad. Sci. USA 112, 8667–1671 (2015).

    CAS  PubMed  Google Scholar 

  22. Ostfeld, R. S. & Keesing, F. Annu. Rev. Ecol. Evol. Syst. 43, 157–182 (2012).

    Google Scholar 

  23. Raymundo, L. J., Halford, A. R., Maypa, A. P. & Kerr, A. M. Proc. Natl Acad. Sci. USA 106, 17067–17070 (2009).

    CAS  PubMed  Google Scholar 

  24. Aeby, G. S., Bourne, D. G., Wilson, B. & Work, T. M. J. Mar. Biol. 2011, 1–8 (2011).

    Google Scholar 

  25. Gignoux-Wolfsohn, S. A., Marks, C. J. & Vollmer, S. V. Sci. Rep. 2, 804 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnson, P. T., Ostfeld, R. S. & Keesing, F. Ecol. Lett. 18, 1119–1133 (2015).

    PubMed  PubMed Central  Google Scholar 

  27. Kayal, M., Lenihan, H. S., Pau, C., Penin, L. & Adjeroud, M. Coral Reefs 30, 827–837 (2011).

    Google Scholar 

  28. Johnston, L. & Miller, M. W. Coral Reefs 33, 1047–1056 (2014).

    Google Scholar 

  29. Tilman, D., Isbell, F. & Cowles, J. M. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

    Google Scholar 

  30. Williams, S. L., Ambo-Rappe, R., Sur, C., Abbott, J. M. & Limbong, S. R. Proc. Natl Acad. Sci. USA 114, 11986–11991 (2017).

    CAS  PubMed  Google Scholar 

  31. Lefcheck, J. S. et al. Proc. Natl Acad. Sci. USA 115, 3658–3662 (2018).

    PubMed  Google Scholar 

  32. Shaver, E. C. & Silliman, B. R. PeerJ 5, e3499 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. Ladd, M. C., Miller, M. W., Hunt, J. H., Sharp, W. C. & Burkepile, D. E. Front. Ecol. Environ. 16, 239–247 (2018).

    Google Scholar 

  34. Bonaldo, R. M. & Hay, M. E. PLoS ONE 9, e85786 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. Baird, A. H., Guest, J. R. & Willis, B. L. Annu. Rev. Ecol. Evol. Syst. 40, 551–571 (2009).

    Google Scholar 

  36. Darling, E. S. et al. Ecol. Lett. 15, 1378–1386 (2012).

    PubMed  Google Scholar 

  37. Rasher, D. B. & Hay, M. E. Proc. Natl Acad. Sci. USA 107, 9683–9688 (2010).

    CAS  PubMed  Google Scholar 

  38. Rasher, D. B., Stout, E. P., Engel, S., Kubanek, J. & Hay, M. E. Proc. Natl Acad. Sci. USA 108, 17726–17731 (2011).

    CAS  PubMed  Google Scholar 

  39. Loya, Y. et al. Ecol. Lett. 4, 122–131 (2001).

    Google Scholar 

  40. Pratchett, M. S. Pac. Sci. 61, 113–120 (2007).

    Google Scholar 

  41. Kayal, M. et al. PLoS ONE 7, e47363 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Fijian government and the Korolevu-i-wai district elders for collection and research permissions, and V. Bonito for scientific and cultural support. Financial support came from the National Science Foundation (OCE 0929119), National Institutes of Health (2 U19 TW007401-10) and Teasley Endowment to the Georgia Institute of Technology.

Author information

Authors and Affiliations

Authors

Contributions

C.S.C. and M.E.H. conceived the study. C.S.C. conducted the research with minor help from M.E.H. C.S.C. carried out the data analysis. C.S.C. and M.E.H. wrote the paper.

Corresponding author

Correspondence to Mark E. Hay.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures and Tables

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clements, C.S., Hay, M.E. Biodiversity enhances coral growth, tissue survivorship and suppression of macroalgae. Nat Ecol Evol 3, 178–182 (2019). https://doi.org/10.1038/s41559-018-0752-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0752-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing