Adaptive changes in sexual signalling in response to urbanization

Abstract

Urbanization can cause species to adjust their sexual displays, because the effectiveness of mating signals is influenced by environmental conditions. Despite many examples that show that mating signals in urban conditions differ from those in rural conditions, we do not know whether these differences provide a combined reproductive and survival benefit to the urban phenotype. Here we show that male túngara frogs have increased the conspicuousness of their calls, which is under strong sexual and natural selection by signal receivers, as an adaptive response to city life. The urban phenotype consequently attracts more females than the forest phenotype, while avoiding the costs that are imposed by eavesdropping bats and midges, which we show are rare in urban areas. Finally, we show in a translocation experiment that urban frogs can reduce risk of predation and parasitism when moved to the forest, but that forest frogs do not increase their sexual attractiveness when moved to the city. Our findings thus reveal that urbanization can rapidly drive adaptive signal change via changes in both natural and sexual selection pressures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3

Data availability

Raw data for the environmental samples, the translocation experiment and the female preference test can be found at the Dryad online depository (https://doi.org/10.5061/dryad.t78c588).

References

  1. 1.

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

  2. 2.

    Seddon, N. et al. Biodiversity in the Anthropocene: prospects and policy. Proc. R. Soc. B 283, 20162094 (2016).

    PubMed  Google Scholar 

  3. 3.

    McKinney, M. L. Urbanisation as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).

    Google Scholar 

  4. 4.

    Marzluff, J., Bowman, R. & Donnelly, R. Avian Ecology and Conservation in an Urbanizing World (Springer, Berlin, 2001).

  5. 5.

    Alberti, M. et al. Integrating humans into ecology: opportunities and challenges for studying urban ecosystems. Bioscience 53, 1169–1179 (2003).

    Google Scholar 

  6. 6.

    Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).

    CAS  PubMed  Google Scholar 

  7. 7.

    Alberti, M. Eco-evolutionary dynamics in an urbanizing planet. Trends Ecol. Evol. 30, 114–126 (2015).

    PubMed  Google Scholar 

  8. 8.

    Berg, M. P. et al. Adapt or disperse: understanding species persistence in a changing world. Glob. Change Biol. 16, 587–598 (2010).

    Google Scholar 

  9. 9.

    Slabbekoorn, H. Songs of the city: noise-dependent spectral plasticity in the acoustic phenotype of urban birds. Anim. Behav. 85, 1089–1099 (2013).

    Google Scholar 

  10. 10.

    Slabbekoorn, H. & den Boer-Visser, A. Cities change the songs of birds. Curr. Biol. 16, 2326–2331 (2006).

    CAS  PubMed  Google Scholar 

  11. 11.

    Ripmeester, E. A. P., Kok, J. S., van Rijssel, J. C. & Slabbekoorn, H. Habitat-related birdsong divergence: a multi-level study on the influence of territory density and ambient noise in European blackbirds. Behav. Ecol. Sociobiol. 64, 409–418 (2010).

    PubMed  Google Scholar 

  12. 12.

    Lee, J. G. H., MacGregor‐Fors, I. & Yeh, P. J. Sunrise in the city: disentangling drivers of the avian dawn chorus onset in urban greenspaces. J. Avian Biol. 48, 955–964 (2017).

    Google Scholar 

  13. 13.

    Dominoni, D. M., Greif, S., Nemeth, E. & Brumm, H. Airport noise predicts song timing of European birds. Ecol. Evol. 6, 6151–6159 (2016).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Yeh, P. J. Rapid evolution of a sexually selected trait following population establishment in a novel habitat. Evolution 58, 166–174 (2004).

    PubMed  Google Scholar 

  15. 15.

    Gaston, K. J., Bennie, J., Davies, T. W. & Hopkins, J. The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biol. Rev. Camb. Philos. Soc. 88, 912–927 (2013).

    PubMed  Google Scholar 

  16. 16.

    Maan, M. E. & Seehausen, O. Ecology, sexual selection and speciation. Ecol. Lett. 14, 591–602 (2011).

    PubMed  Google Scholar 

  17. 17.

    Wilkins, M. R., Seddon, N. & Safran, R. J. Evolutionary divergence in acoustic signals: causes and consequences. Trends Ecol. Evol. 28, 156–166 (2013).

    PubMed  Google Scholar 

  18. 18.

    Panhuis, T. M., Butlin, R., Zuk, M. & Tregenza, T. Sexual selection and speciation. Trends Ecol. Evol. 16, 364–371 (2001).

    PubMed  Google Scholar 

  19. 19.

    Trillo, P., Athanas, K., Goldhill, D., Hoke, K. & Funk, W. The influence of geographic heterogeneity in predation pressure on sexual signal divergence in an Amazonian frog species complex. J. Evol. Biol. 26, 216–222 (2013).

    CAS  PubMed  Google Scholar 

  20. 20.

    Warren, P. S., Katti, M., Ermann, M. & Brazel, A. Urban bioacoustics: it’s not just noise. Anim. Behav. 71, 491–502 (2006).

    Google Scholar 

  21. 21.

    Slabbekoorn, H., Yang, X. J. & Halfwerk, W. Birds and anthropogenic noise: singing higher may matter (a comment on Nemeth and Brumm, “Birds and anthropogenic noise: are urban songs adaptive?”). Am. Nat. 180, 142–145 (2012).

    PubMed  Google Scholar 

  22. 22.

    Nemeth, E. & Brumm, H. Birds and anthropogenic noise: are urban songs adaptive? Am. Nat. 176, 465–475 (2010).

    PubMed  Google Scholar 

  23. 23.

    Montague, M. J., Danek-Gontard, M. & Kunc, H. P. Phenotypic plasticity affects the response of a sexually selected trait to anthropogenic noise. Behav. Ecol. 24, 343–348 (2013).

    Google Scholar 

  24. 24.

    Swaddle, J. P. et al. A framework to assess evolutionary responses to anthropogenic light and sound. Trends Ecol. Evol. 30, 550–560 (2015).

    PubMed  Google Scholar 

  25. 25.

    Halfwerk, W. & Slabbekoorn, H. Pollution going multimodal: the complex impact of the human-altered sensory environment on animal perception and performance. Biol. Lett. 11, 20141051 (2015).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Morley, E. L., Jones, G. & Radford, A. N. The importance of invertebrates when considering the impacts of anthropogenic noise. Proc. R. Soc. B 281, 20132683 (2014).

  27. 27.

    Lampe, U., Reinhold, K. & Schmoll, T. How grasshoppers respond to road noise: developmental plasticity and population differentiation in acoustic signalling. Funct. Ecol. 28, 660–668 (2014).

    Google Scholar 

  28. 28.

    Sun, J. W. C. & Narins, P. A. Anthropogenic sounds differentially affect amphibian call rate. Biol. Conserv. 121, 419–427 (2005).

    Google Scholar 

  29. 29.

    Luther, D. & Baptista, L. Urban noise and the cultural evolution of bird songs. Proc. R. Soc. B 277, 469–473 (2010).

    PubMed  Google Scholar 

  30. 30.

    Gross, K., Pasinelli, G. & Kunc, H. P. Behavioral plasticity allows short-term adjustment to a novel environment. Am. Nat. 176, 456–464 (2010).

    PubMed  Google Scholar 

  31. 31.

    Read, J., Jones, G. & Radford, A. N. Fitness costs as well as benefits are important when considering responses to anthropogenic noise. Behav. Ecol. 25, 4–7 (2014).

    Google Scholar 

  32. 32.

    Halfwerk, W., Bot, S. & Slabbekoorn, H. Male great tit song perch selection in response to noise-dependent female feedback. Funct. Ecol. 26, 1339–1347 (2012).

    Google Scholar 

  33. 33.

    Halfwerk, W. et al. Low-frequency songs lose their potency in noisy urban conditions. Proc. Natl Acad. Sci. USA 108, 14549–14554 (2011).

    CAS  PubMed  Google Scholar 

  34. 34.

    Ryan, M. J. The Túngara Frog: A Study in Sexual Selection and Communication (Univ. Chicago Press, Chicago, 1985).

  35. 35.

    Gridi-Papp, M., Rand, A. S. & Ryan, M. J. Complex call production in the tungara frog. Nature 441, 38 (2006).

    CAS  PubMed  Google Scholar 

  36. 36.

    Rand, A. S. & Ryan, M. J. The adaptive significance of a complex vocal repertoire in a Neotropical frog. Z. Tierpsychol. 57, 209–214 (1981).

    Google Scholar 

  37. 37.

    Akre, K. L., Farris, H. E., Lea, A. M., Page, R. A. & Ryan, M. J. Signal perception in frogs and bats and the evolution of mating signals. Science 333, 751–752 (2011).

    CAS  PubMed  Google Scholar 

  38. 38.

    Bernal, X. E., Rand, A. S. & Ryan, M. J. Acoustic preferences and localization performance of blood-sucking flies (Corethrella coquillett) to túngara frog calls. Behav. Ecol. 17, 709–715 (2006).

    Google Scholar 

  39. 39.

    Tuttle, M. D. & Ryan, M. J. Bat predation and the evolution of frog vocalizations in the Neotropics. Science 214, 677–678 (1981).

    CAS  PubMed  Google Scholar 

  40. 40.

    Halfwerk, W., Jones, P., Taylor, R., Ryan, M. J. & Page, R. Risky ripples allow bats and frogs to eavesdrop on a multisensory sexual display. Science 343, 413–416 (2014).

    CAS  PubMed  Google Scholar 

  41. 41.

    Halfwerk, W., Lea, A. M., Guerra, M., Page, R. A. & Ryan, M. J. Vocal responses to noise reveal the presence of the Lombard effect in a frog. Behav. Ecol. 27, 669–676 (2016).

    Google Scholar 

  42. 42.

    Rand, A. S., Bridarolli, M. E., Dries, L. & Ryan, M. J. Light levels influence female choice in túngara frogs: predation risk assessment? Copeia 1997, 447–450 (1997).

  43. 43.

    Gomes, D. G. E. et al. Bats perceptually weight prey cues across sensory systems when hunting in noise. Science 353, 1277–1280 (2016).

    CAS  PubMed  Google Scholar 

  44. 44.

    McMahon, T. A., Rohr, J. R. & Bernal, X. E. Light and noise pollution interact to disrupt interspecific interactions. Ecology 98, 1290–1299 (2017).

    PubMed  Google Scholar 

  45. 45.

    Bernal, X. E., Akre, K. L., Baugh, A. T., Rand, A. S. & Ryan, M. J. Female and male behavioral response to advertisement calls of graded complexity in túngara frogs, Physalaemus pustulosus. Behav. Ecol. Sociobiol. 63, 1269–1279 (2009).

    Google Scholar 

  46. 46.

    Marler, C. & Ryan, M. Energetic constraints and steroid hormone correlates of male calling behaviour in the túngara frog. J. Zool. 240, 397–409 (1996).

    Google Scholar 

  47. 47.

    Kime, N. M., Whitney, T. K., Davis, E. S. & Marler, C. A. Arginine vasotocin promotes calling behavior and call changes in male túngara frogs. Brain Behav. Evol. 69, 254–265 (2007).

    PubMed  Google Scholar 

  48. 48.

    Atwell, J. W. et al. Boldness behavior and stress physiology in a novel urban environment suggest rapid correlated evolutionary adaptation. Behav. Ecol. 23, 960–969 (2012).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Sol, D., Lapiedra, O. & González-Lagos, C. Behavioural adjustments for a life in the city. Anim. Behav. 85, 1101–1112 (2013).

    Google Scholar 

  50. 50.

    Møller, A. P. Flight distance of urban birds, predation, and selection for urban life. Behav. Ecol. Sociobiol. 63, 63 (2008).

    Google Scholar 

  51. 51.

    Halfwerk, W. et al. Environmental conditions limit attractiveness of a complex sexual signal in the túngara frog. Nat. Commun. 8, 1891 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Dudley, R. & Rand, A. S. Sound production and vocal sac inflation in the túngara frog, Physalaemus pustulosus (Leptodactylidae). Copeia 1991, 460–470 (1991).

  53. 53.

    Audet, J.-N., Ducatez, S. & Lefebvre, L. The town bird and the country bird: problem solving and immunocompetence vary with urbanization. Behav. Ecol. 27, 637–644 (2016).

    Google Scholar 

  54. 54.

    Carrete, M. & Tella, J. L. Inter-individual variability in fear of humans and relative brain size of the species are related to contemporary urban invasion in birds. PLoS ONE 6, e18859 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    LaZerte, S. E., Slabbekoorn, H. & Otter, K. A. Learning to cope: vocal adjustment to urban noise is correlated with prior experience in black-capped chickadees. Proc. R. Soc. B 283, 20161058 (2016).

    PubMed  Google Scholar 

  56. 56.

    Francis, C. D., Ortega, C. P. & Cruz, A. Noise pollution changes avian communities and species interactions. Curr. Biol. 19, 1415–1419 (2009).

    CAS  PubMed  Google Scholar 

  57. 57.

    Crooks, K. R. & Soulé, M. E. Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400, 563–566 (1999).

    CAS  Google Scholar 

  58. 58.

    Tan, W. H., Tsai, C. G., Lin, C. & Lin, Y. K. Urban canyon effect: storm drains enhance call characteristics of the Mientien tree frog. J. Zool. 294, 77–84 (2014).

    Google Scholar 

  59. 59.

    Rand, A. S., Ryan, M. J. & Wilczynski, W. Signal redundancy and receiver permissiveness in acoustic mate recognition by the túngara frog, Physalaemus pustulosus. Am. Zool. 32, 81–90 (1992).

    Google Scholar 

  60. 60.

    Trillo, P. A. et al. Collateral damage or a shadow of safety? The effects of signalling heterospecific neighbours on the risks of parasitism and predation. Proc. R. Soc. B 283, 20160343 (2016).

    PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to L. de Herder, J. Smit and H. Loning for their help with collecting the data. We thank the Beta VU workshop for development of the playback devices and the Smithsonian Tropical Research Institute (STRI) for logistical support and in particular R. Taylor and K. Hunter for the use of the phonotaxis chamber. M. Still provided valuable advice on male and female sampling. The research was funded through a Marie Curie grant (655262), a Veni grant (863.15.006) and through the Ecology fund of the Royal Netherlands Academy of Arts and Sciences (713/18011). X.E.B. was funded by NSF grant IOS1433990.

Author information

Affiliations

Authors

Contributions

W.H. and J.E. conceived the study and designed the experiments. M.B., L.K., N.H. and S.G. collected the field data. M.B., L.K., S.G. and W.H. analysed the data. W.H., J.E., R.A.P., P.A.T., X.E.B. and M.J.R. discussed the results and wrote the paper.

Corresponding author

Correspondence to Wouter Halfwerk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3

Reporting Summary

Supplementary Data 1

Example call of a forest male frog recorded along pipeline road. Sound file belonging to spectrogram of forest male shown in Figure 2

Supplementary Data 2

Example call of an urban male recorded in the town of Gamboa. Sound file belonging to spectrogram of urban male shown in Figure 2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Halfwerk, W., Blaas, M., Kramer, L. et al. Adaptive changes in sexual signalling in response to urbanization. Nat Ecol Evol 3, 374–380 (2019). https://doi.org/10.1038/s41559-018-0751-8

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing