Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Species diversity as a surrogate for conservation of phylogenetic and functional diversity in terrestrial vertebrates across the Americas


Preserving the evolutionary history and ecological functions that different species embody, in addition to species themselves, is a growing concern for conservation. Recent studies warn that conservation priority regions identified using species diversity differ from those based on phylogenetic or functional diversity. However, spatial mismatches in conservation priority regions need not indicate low surrogacy among these dimensions in conservation planning. Here, we use data for 10,213 terrestrial vertebrate species across the Americas to evaluate surrogacy; that is, the proportion of phylogenetic or functional diversity represented in conservation plans targeting species. We find that most conservation plans targeting species diversity also represent phylogenetic and functional diversity well, despite spatial mismatches in the priority regions identified by each plan. However, not all phylogenetic and functional diversity is represented within species-based plans, with the highest-surrogacy conservation strategy depending on the proportion of land area included in plans. Our results indicate that targeting species diversity could be sufficient to preserve much of the phylogenetic and functional dimensions of biodiversity in terrestrial vertebrates of the Americas. Incorporating phylogenetic and functional data in broad-scale conservation planning may not always be necessary, especially when the cost of doing so is high.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Species diversity is a good surrogate for phylogenetic and functional diversity in conservation plans for terrestrial vertebrates of the Americas.
Fig. 2: Value of species diversity as a surrogate for phylogenetic and functional diversity.
Fig. 3: Proportion of evolutionary and functional distinctiveness not represented within species-based conservation plans.

Data availability

Distribution and extinction risk data for amphibians, birds, mammals and most reptiles are available through the IUCN Red List (; for amphibians, reptiles and mammals) and BirdLife International (; for birds). Phylogenetic data are available through the TimeTree of Life project ( Trait data were obtained from a number of existing data sources listed in the Methods. Distribution and extinction risk data for some of the squamate species of South America and the Caribbean are currently being processed by IUCN and will be provided shortly in the same format as that used for the other taxa ( and All analysis R code, processed input data and summary output files are available in a dedicated GitHub repository at


  1. 1.

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. The future of biodiversity. Science 269, 347–350 (1995).

    CAS  Article  Google Scholar 

  3. 3.

    Purvis, A. Nonrandom extinction and the loss of evolutionary history. Science 288, 328–330 (2000).

    CAS  Article  Google Scholar 

  4. 4.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    Pollock, L. J., Thuiller, W. & Jetz, W. Large conservation gains possible for global biodiversity facets. Nature 546, 141–144 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl Acad. Sci. USA 114, 7641–7646 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Rosauer, D. F., Pollock, L. J., Linke, S. & Jetz, W. Phylogenetically informed spatial planning is required to conserve the mammalian tree of life. Proc. R. Soc. B 284, 20170627 (2017).

    Article  Google Scholar 

  8. 8.

    Rosauer, D. F. & Moritz, C. Real-world conservation planning for evolutionary diversity in the Kimberley, Australia, sidesteps uncertain taxonomy. Conserv. Lett. 11, e12438 (2017).

    Article  Google Scholar 

  9. 9.

    Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).

    PubMed  Google Scholar 

  10. 10.

    Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    Mazel, F. et al. Multifaceted diversity–area relationships reveal global hotspots of mammalian species, trait and lineage diversity. Glob. Ecol. Biogeogr. 23, 836–847 (2014).

    Article  Google Scholar 

  12. 12.

    Pardo, I. et al. Spatial congruence between taxonomic, phylogenetic and functional hotspots: true pattern or methodological artefact? Divers. Distrib. 23, 209–220 (2017).

    Article  Google Scholar 

  13. 13.

    Strecker, A. L., Olden, J. D., Whittier, J. B. & Paukert, C. P. Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity. Ecol. Appl. 21, 3002–3013 (2011).

    Article  Google Scholar 

  14. 14.

    Rodrigues, A. S. L. Effective global conservation strategies. Nature 450, E19 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    Rodrigues, A. S. L. & Brooks, T. M. Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu. Rev. Ecol. Evol. Syst. 38, 713–737 (2007).

    Article  Google Scholar 

  16. 16.

    Rodrigues, A. S. L. et al. Complete, accurate, mammalian phylogenies aid conservation planning, but not much. Philos. Trans. R. Soc. B 366, 2652–2660 (2011).

    Article  Google Scholar 

  17. 17.

    Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1242 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    The IUCN Red List of Threatened Species Version 2016-1 (IUCN, accessed 26 January 2016);

  19. 19.

    Mittermeier, R. A. et al. Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Ecoregions (CEMEX, Conservation International and Agrupación Sierra Madre, Mexico City, 2004).

  20. 20.

    Stattersfield, A. J., Crosby, M. J., Long, A. J. & Wege, D. C. Endemic Bird Areas of the World: Priorities for Biodiversity Conservation (BirdLife International, Cambridge, 1998).

  21. 21.

    Olson, D. M. & Dinerstein, E. The Global 200: a representation approach to conserving the Earth’s most biologically valuable ecoregions. Conserv. Biol. 12, 502–515 (1998).

    Article  Google Scholar 

  22. 22.

    Hedges, S. B., Marin, J., Suleski, M., Paymer, M. & Kumar, S. Tree of life reveals clock-like speciation and diversification. Mol. Biol. Evol. 32, 835–845 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Ferrier, S. Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Syst. Biol. 51, 331–363 (2002).

    Article  Google Scholar 

  24. 24.

    Gaston, K. J. & Blackburn, T. M. Range size–body size relationships: evidence of scale dependence. Oikos 75, 479–485 (1996).

    Article  Google Scholar 

  25. 25.

    Böhm, M. et al. Correlates of extinction risk in squamate reptiles: the relative importance of biology, geography, threat and range size. Glob. Ecol. Biogeogr. 25, 391–405 (2016).

    Article  Google Scholar 

  26. 26.

    Fritz, S. A., Bininda-Emonds, O. R. P. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol. Lett. 12, 538–549 (2009).

    Article  Google Scholar 

  27. 27.

    Ducatez, S. & Shine, R. Drivers of extinction risk in terrestrial vertebrates. Conserv. Lett. 10, 186–194 (2017).

    Article  Google Scholar 

  28. 28.

    Moilanen, A. et al. Zonation Spatial Conservation Planning Framework and Software V3.1, User Manual (Edita, Helsinki, 2012).

  29. 29.

    Grantham, H. S., Pressey, R. L., Wells, J. A. & Beattie, A. J. Effectiveness of biodiversity surrogates for conservation planning: different measures of effectiveness generate a kaleidoscope of variation. PLoS ONE 5, e11430 (2010).

    Article  Google Scholar 

  30. 30.

    Isaac, N. J. B., Turvey, S. T., Collen, B., Waterman, C. & Baillie, J. E. M. Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE 2, e296 (2007).

    Article  Google Scholar 

  31. 31.

    Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11, e1001569 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    Gaston, K. J. Valuing common species. Science 327, 154–155 (2010).

    CAS  Article  Google Scholar 

  33. 33.

    Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).

    Article  Google Scholar 

  34. 34.

    Butchart, S. H. M. et al. Protecting important sites for biodiversity contributes to meeting global conservation targets. PLoS ONE 7, e32529 (2012).

    CAS  Article  Google Scholar 

  35. 35.

    Brooks, T. M. Global biodiversity conservation priorities. Science 313, 58–61 (2006).

    CAS  Article  Google Scholar 

  36. 36.

    A Global Standard for the Identification of Key Biodiversity Areas (IUCN, Gland, 2016).

  37. 37.

    Ficetola, G. F., Mazel, F. & Thuiller, W. Global determinants of zoogeographical boundaries. Nat. Ecol. Evol. 1, 0089 (2017).

    Article  Google Scholar 

  38. 38.

    Ellis, E. C. Anthropogenic transformation of the terrestrial biosphere. Philos. Trans. R. Soc. A 369, 1010–1035 (2011).

    Article  Google Scholar 

  39. 39.

    Westgate, M. J., Tulloch, A. I. T., Barton, P. S., Pierson, J. C. & Lindenmayer, D. B. Optimal taxonomic groups for biodiversity assessment: a meta-analytic approach. Ecography 40, 539–548 (2017).

    Article  Google Scholar 

  40. 40.

    Whittaker, R. J. et al. Conservation biogeography: assessment and prospect. Divers. Distrib. 11, 3–23 (2005).

    Article  Google Scholar 

  41. 41.

    Bird Species Distribution Maps of the World (Birdlife International & NatureServe, accessed 19 May 2016);

  42. 42.

    Young, B. E. Red listing Central American squamates reptiles. Herpetol. Rev. 43, 368–370 (2012).

    Google Scholar 

  43. 43.

    Marin, J. & Hedges, S. B. Time best explains global variation in species richness of amphibians, birds and mammals. J. Biogeogr. 43, 1069–1079 (2016).

    Article  Google Scholar 

  44. 44.

    Rodrigues, A. S. L. & Gaston, K. J. Maximising phylogenetic diversity in the selection of networks of conservation areas. Biol. Conserv. 105, 103–111 (2002).

    Article  Google Scholar 

  45. 45.

    Wilman, H. et al. Eltontraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).

    Article  Google Scholar 

  46. 46.

    Myhrvold, N. P., Baldridge, E., Chan, B., Freeman, D. L. & Ernest, S. K. M. An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles. Ecology 96, 3109 (2015).

    Article  Google Scholar 

  47. 47.

    Feldman, A., Sabath, N., Pyron, R. A., Mayrose, I. & Meiri, S. Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Glob. Ecol. Biogeogr. 25, 187–197 (2016).

    Article  Google Scholar 

  48. 48.

    Slavenko, A. & Meiri, S. Mean body sizes of amphibian species are poorly predicted by climate. J. Biogeogr. 42, 1246–1254 (2015).

    Article  Google Scholar 

  49. 49.

    Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data 4, 170123 (2017).

    Article  Google Scholar 

  50. 50.

    Rapacciuolo, G. et al. The signature of human pressure history on the biogeography of body mass in tetrapods. Glob. Ecol. Biogeogr. 26, 1022–1034 (2017).

    Article  Google Scholar 

  51. 51.

    Woodward, G. et al. Body size in ecological networks. Trends Ecol. Evol. 20, 402–409 (2005).

    Article  Google Scholar 

  52. 52.

    Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).

    Article  Google Scholar 

  53. 53.

    IUCN Red List Categories and Criteria Version 3.1 (IUCN, Gland, 2012).

  54. 54.

    Zupan, L. et al. Spatial mismatch of phylogenetic diversity across three vertebrate groups and protected areas in Europe. Divers. Distrib. 20, 674–685 (2014).

    Article  Google Scholar 

  55. 55.

    Albouy, C., Delattre, V. L., Mérigot, B., Meynard, C. N. & Leprieur, F. Multifaceted biodiversity hotspots of marine mammals for conservation priorities. Divers. Distrib. 23, 615–626 (2017).

    Article  Google Scholar 

  56. 56.

    Mouillot, D. et al. Global marine protected areas do not secure the evolutionary history of tropical corals and fishes. Nat. Commun. 7, 10359 (2016).

    CAS  Article  Google Scholar 

  57. 57.

    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).

    Article  Google Scholar 

  58. 58.

    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).

    Article  Google Scholar 

  59. 59.

    Pearse, W. D. et al. pez: phylogenetics for the environmental sciences. Bioinformatics 31, 2888–2890 (2015).

    CAS  Article  Google Scholar 

  60. 60.

    Ferrier, S. & Watson, G. An Evaluation of the Effectiveness of Environmental Surrogates and Modelling Techniques in Predicting the Distribution of Biological Diversity (Environment Australia, Canberra, 1997).

  61. 61.

    Sabatini, F. M. et al. One taxon does not fit all: herb-layer diversity and stand structural complexity are weak predictors of biodiversity in Fagus sylvatica forests. Ecol. Indic. 69, 126–137 (2016).

    Article  Google Scholar 

  62. 62.

    Lehtomaki, J. zonator: Utilities for Zonation Spatial Conservation Prioritization Software R package version 0.5.9 (R Foundation for Statistical Computing, Vienna, 2017);

  63. 63.

    Veron, S. et al. Integrating data-deficient species in analyses of evolutionary history loss. Ecol. Evol. 6, 8502–8514 (2016).

    Article  Google Scholar 

Download references


This work was supported by the US National Science Foundation (grant 1136586). We thank the IUCN and the many herpetologists who participated in the Red List assessments of Central and South America reptiles.

Author information




T.M.B., G.R. and C.H.G. designed the study with input from all other authors. G.R. and J.M. integrated and processed the datasets. G.R. conducted the analyses with input from T.M.B., C.H.G. and J.M. G.R. and T.M.B wrote the initial manuscript draft. All authors contributed to editing subsequent manuscript versions.

Corresponding author

Correspondence to Giovanni Rapacciuolo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7, Supplementary Tables 1–6 and Supplementary References

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rapacciuolo, G., Graham, C.H., Marin, J. et al. Species diversity as a surrogate for conservation of phylogenetic and functional diversity in terrestrial vertebrates across the Americas. Nat Ecol Evol 3, 53–61 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing