Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evolution and extinction of the giant rhinoceros Elasmotherium sibiricum sheds light on late Quaternary megafaunal extinctions

Abstract

Understanding extinction events requires an unbiased record of the chronology and ecology of victims and survivors. The rhinoceros Elasmotherium sibiricum, known as the ‘Siberian unicorn’, was believed to have gone extinct around 200,000 years ago—well before the late Quaternary megafaunal extinction event. However, no absolute dating, genetic analysis or quantitative ecological assessment of this species has been undertaken. Here, we show, by accelerator mass spectrometry radiocarbon dating of 23 individuals, including cross-validation by compound-specific analysis, that E. sibiricum survived in Eastern Europe and Central Asia until at least 39,000 years ago, corroborating a wave of megafaunal turnover before the Last Glacial Maximum in Eurasia, in addition to the better-known late-glacial event. Stable isotope data indicate a dry steppe niche for E. sibiricum and, together with morphology, a highly specialized diet that probably contributed to its extinction. We further demonstrate, with DNA sequencing data, a very deep phylogenetic split between the subfamilies Elasmotheriinae and Rhinocerotinae that includes all the living rhinoceroses, settling a debate based on fossil evidence and confirming that the two lineages had diverged by the Eocene. As the last surviving member of the Elasmotheriinae, the demise of the ‘Siberian unicorn’ marked the extinction of this subfamily.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Artist’s impression and mounted skeleton of Elasmotherium species.
Fig. 2: Map of distribution and samples analysed.
Fig. 3: Plot of calibrated ages for E. sibiricum.
Fig. 4: Maximum clade credibility tree of rhinoceroses and selected outgroup perissodactyls resulting from our time-calibrated BEAST analyses.
Fig. 5: Stable carbon (δ13C) and nitrogen (δ15N) values of various species.

Data availability

The four mitochondrial genome consensus sequences with coverage ≥80% and mean read depth ≥5× are available on GenBank (MH937513-MH937516). All consensus sequences, unmapped sequencing reads and phylogenetic analysis files associated with our ancient DNA work are available on Figshare (https://doi.org/10.25909/5ba34a40ba925). All the radiocarbon data generated at the ORAU and CIO are archived internally at the respective laboratories, and are available upon request. ORAU data are also available on the laboratory’s website, along with a link to the paper.

References

  1. 1.

    Fortelius, M. New and Old Worlds Database of Fossil Mammals (NOW) (Univ. Helsinki, 2017).

  2. 2.

    Antoine, P.-O. Phylogénie et évolution des Elasmotheriina (Mammalia, Rhinocerotidae). Mém. Mus. Natl Hist.Nat. 188, 1–359 (2002).

    Google Scholar 

  3. 3.

    Becker, D., Antoine, P. O. & Maridet, O. A new genus of Rhinocerotidae (Mammalia, Perissodactyla) from the Oligocene of Europe. J. Syst. Palaeontol. 11, 947–972 (2013).

    Article  Google Scholar 

  4. 4.

    Cerdeño, E. Cladistic analysis of the family Rhinocerotidae (Perissodactyla). Am. Mus. Novit. 3143, 1–25 (1995).

    Google Scholar 

  5. 5.

    Guérin, C. & Pickford, M. Ougandatherium napakense nov. gen. nov. sp., le plus ancien Rhinocerotidae Iranotheriinae d’Afrique. Ann. Paléontol. 89, 1–35 (2003).

    Article  Google Scholar 

  6. 6.

    Deng, T. & Zheng, M. Limb bones of Elasmotherium (Rhinocerotidae, Perissodactyla) from Nihewan (Hebei, China). Vert. PalAs. 43, 110–121 (2005).

    Google Scholar 

  7. 7.

    Schvyreva, A. K. On the importance of the representatives of the genus Elasmotherium (Rhinocerotidae, Mammalia) in the biochronology of the Pleistocene of Eastern Europe. Quat. Int. 379, 128–134 (2015).

    Article  Google Scholar 

  8. 8.

    Kozamkulova, B. S. Elasmotherium sibiricum und sein Verbreitungsgebiet auf dem Territorium der UdSSR. Quartärpaläontologie 4, 85–91 (1981).

    Google Scholar 

  9. 9.

    Kosintsev, P. A. in The Quaternary of the Urals: Global Trends and Pan-European Quaternary Records (eds Borodin, A. V., Markova, E. A. & Strukova, T. V.) 67–68 (UrFU, Ekaterinburg, 2014)..

  10. 10.

    Lister, A. M. & Stuart, A. J. Extinction chronology of the woolly rhinoceros Coelodonta antiquitatis: reply to Kuzmin. Quat. Sci. Rev. 62, 144–146 (2013).

    Article  Google Scholar 

  11. 11.

    Devièse, T., Comeskey, D., McCullagh, J., Bronk Ramsey, C. & Higham, T. New protocol for compound-specific radiocarbon analysis of archaeological bones. Rapid Commun. Mass Spectrom. 32, 373–379 (2018).

    Article  Google Scholar 

  12. 12.

    Bourrillon, R. et al. A new Aurignacian engraving from Abri Blanchard, France: implications forunderstanding Aurignacian graphic expression in Western and Central Europe. Quat. Int. 491, 46–64 (2018).

    Article  Google Scholar 

  13. 13.

    Devièse, T. et al. Direct dating of Neanderthal remains from the site of Vindija Cave and implications for themiddle to upper Paleolithic transition. Proc. Natl Acad. Sci. USA 114, 10606–10611 (2017).

    Article  Google Scholar 

  14. 14.

    Reynolds, N., Dinnis, R., Bessudnov, A. A., Devièse, T. & Higham, T. The Kostënki 18 child burial and thecultural and funerary landscape of mid upper Palaeolithic European Russia. Antiquity 91, 1435–1450 (2017).

    Article  Google Scholar 

  15. 15.

    Devièse, T. et al. Increasing accuracy for the radiocarbon dating of sites occupied by the first Americans. Quat. Sci. Rev. 198, 171–180 (2018).

    Article  Google Scholar 

  16. 16.

    Becerra-Valdivia, L. et al. Reassessing the chronology of the archaeological site of Anzick. Proc. Natl Acad. Sci. USA 115, 7000–7003 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    Reimer, P. J. et al. Intcal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    Bronk Ramsey, C. Recent and planned developments of the program OxCal. Radiocarbon 55, 720–730 (2013).

    Article  Google Scholar 

  19. 19.

    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    Article  Google Scholar 

  20. 20.

    Kosintsev, P. A. Ural and Siberia Faunas at Pleistocene and Holocene Times (IPAE UB RAS, Chelyabinsk, 2005).

  21. 21.

    Vasil'ev, S. A. Faunal exploitation, subsistence practices and Pleistocene extinctions in Palaeolithic Siberia. Deinsea 9, 513–556 (2003).

    Google Scholar 

  22. 22.

    Price, S. A. & Bininda-Emonds, O. R. P. A comprehensive phylogeny of extant horses, rhinos and tapirs (Perissodactyla) through data combination. Zoosystematics Evol. 85, 277–292 (2009).

    Article  Google Scholar 

  23. 23.

    Steiner, C. C. & Ryder, O. A. Molecular phylogeny and evolution of the Perissodactyla. Zool. J. Linn. Soc. 163, 1289–1303 (2011).

    Article  Google Scholar 

  24. 24.

    Meredith, R. W. et al. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334, 521–524 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    Heissig, K. The American genus Penetrigonias Tanner & Martin, 1976 (Mammalia: Rhinocerotidae) as a stem group elasmothere and ancestor of Menoceras Troxell, 1921. Zitteliana A 52, 79–95 (2012).

    Google Scholar 

  26. 26.

    Boehme, M. et al. Na Duong (northern Vietnam)—an exceptional window into Eocene ecosystems from Southeast Asia. Zitteliana A 53, 120–167 (2013).

    Google Scholar 

  27. 27.

    Shpansky, A. V., Ilyina, S. A. & Aliyasova, V. N. The Quaternary mammals from Kozhamzhar locality (Pavlodar Region, Kazakhstan). Am. J. Appl. Sci. 13, 189–199 (2016).

    Article  Google Scholar 

  28. 28.

    Reimer, P. J. & Svyatko, S. V. Comment on Shpansky et al. 2016, The Quaternary mammals fromKozhamzhar locality (Pavlodar region, Kazakhstan). Am. J. Appl. Sci. 13, 477–478 (2016).

    Article  Google Scholar 

  29. 29.

    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).

    Article  Google Scholar 

  30. 30.

    Stuart, A. J. Late Quaternary megafaunal extinctions on the continents: a short review. Geol. J. 50, 338–363 (2015).

    Article  Google Scholar 

  31. 31.

    Stuart, A. J. & Lister, A. M . Patterns of late Quaternary megafaunal extinctions in Europe and northern Asia. Cour. Forsch. Inst. Senckenberg 259, 289–299 (2007).

    Google Scholar 

  32. 32.

    Cooper, A. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 602–606 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Hughes, P. D. & Gibbard, P. L. A stratigraphical basis for the Last Glacial Maximum (LGM). Quat. Int. 383, 174–185 (2015).

    Article  Google Scholar 

  34. 34.

    Monegato, G., Scardia, G., Hajdas, I., Rizzini, F. & Piccin, A. The Alpine LGM in the boreal ice-sheets game. Sci. Rep. 7, 2078 (2017).

    Article  Google Scholar 

  35. 35.

    Higham, T. et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306–309 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    Heintzman, P. D. et al. A new genus of horse from Pleistocene North America. eLife 6, e29944 (2017)..

  37. 37.

    Stuart, A. J. & Lister, A. M. Extinction chronology of the woolly rhinoceros Coelodonta antiquitatis in the context of late Quaternary megafaunal extinctions in northern Eurasia. Quat. Sci. Rev. 51, 1–17 (2012).

    Article  Google Scholar 

  38. 38.

    Stuart, A. J. & Lister, A. M. New radiocarbon evidence on the extirpation of the spotted hyaena (Crocuta crocuta (Erxl.)) in northern Eurasia. Quat. Sci. Rev. 96, 108–116 (2014).

    Article  Google Scholar 

  39. 39.

    Dinnis, R., Pate, A. & Reynolds, N. Mid-to-late Marine Isotope Stage 3 mammal faunas of Britain: a new look. Proc. Geol. Assoc. 127, 435–444 (2016).

    Article  Google Scholar 

  40. 40.

    Pacher, M. & Stuart, A. J. Extinction chronology and palaeobiology of the cave bear (Ursus spelaeus). Boreas 38, 189–206 (2009).

    Article  Google Scholar 

  41. 41.

    Bocherens, H. et al. The last of its kind? Radiocarbon, ancient DNA and stable isotope evidence from a late cave bear (Ursus spelaeus ROSENMÜLLER, 1794) from Rochedane (France). Quat. Int. 339–340, 179–188 (2014).

    Article  Google Scholar 

  42. 42.

    Stuart, A. J., Kosintsev, P. A., Higham, T. & Lister, A. M. Pleistocene to Holocene extinction dynamics in giant deer and woolly mammoth. Nature 431, 684–689 (2004).

    CAS  Article  Google Scholar 

  43. 43.

    Guillevic, M. et al. Evidence for a three-phase sequence during Heinrich stadial 4 using a multiproxy approach based on Greenland ice core records. Clim. Past 10, 2115–2133 (2014).

    Article  Google Scholar 

  44. 44.

    Hubberten, H. W. et al. The periglacial climate and environment in northern Eurasia during the Last Glaciation. Quat. Sci. Rev. 23, 1333–1357 (2004).

    Article  Google Scholar 

  45. 45.

    Boeskorov, G. G. et al. Woolly rhino discovery in the lower Kolyma River. Quat. Sci. Rev. 30, 2262–2272 (2011).

    Article  Google Scholar 

  46. 46.

    Rivals, F. & Lister, A. M. Dietary flexibility and niche partitioning of large herbivores through the Pleistocene of Britain. Quat. Sci. Rev. 146, 116–133 (2016).

    Article  Google Scholar 

  47. 47.

    Saarinen, J., Eronen, J., Fortelius, M., Seppä, H. & Lister, A. M. Patterns of diet and body mass of large ungulates from the Pleistocene of Western Europe, and their relation to vegetation. Palaeontol. Electron. 19, 1–58 (2016).

    Google Scholar 

  48. 48.

    Pushkina, D., Bocherens, H. & Ziegler, R. Unexpected palaeoecological features of the middle and latePleistocene large herbivores in southwestern Germany revealed by stable isotopic abundances in tooth enamel. Quat. Int. 339-340, 164–178 (2014).

    Article  Google Scholar 

  49. 49.

    Zeuner, F. E. New reconstructions of the woolly rhinoceros and Merck’s rhinoceros. Proc. Linn. Soc. Lond. 156, 183–195 (1945).

    Article  Google Scholar 

  50. 50.

    Zhegallo, V. et al. On the fossil rhinoceros Elasmotherium (including the collections of the Russian Academy of Sciences). Cranium 22, 17–40 (2005).

    Google Scholar 

  51. 51.

    Grichuk, V. P. Dynamics of Terrestrial Landscape Components and Inner Marine Basins of Northern Eurasia During the Last 130,000 Years (ed. Velichko, A. A.) 64–88 (GEOS, Moscow, 2002).

  52. 52.

    Bocherens, H. Isotopic biogeochemistry and the paleoecology of the mammoth steppe fauna. Deinsea 9, 57–76 (2003).

    Google Scholar 

  53. 53.

    Jürgensen, J. et al. Diet and habitat of the saiga antelope during the late Quaternary using stable carbon and nitrogen isotope ratios. Quat. Sci. Rev. 160, 150–161 (2017).

    Article  Google Scholar 

  54. 54.

    Badeck, F.-W., Tcherkez, G., Nogués, S., Piel, C. & Ghashghaie, J. Post-photosynthetic fractionation of stable carbon isotopes between plant organs—a widespread phenomenon. Rapid Commun. Mass Spectrom. 19, 1381–1391 (2005).

    CAS  Article  Google Scholar 

  55. 55.

    Drucker, G. et al. Tracking possible decline of woolly mammoth during the Gravettian in Dordogne (France) and the Ach Valley (Germany) using multi-isotope tracking (13C, 14C, 15N, 34S, 18O). Quat. Int. 360, 304–317 (2015).

    Article  Google Scholar 

  56. 56.

    Drucker, D. G., Bocherens, H. & Péan, S. Isotopes stables (13C, 15N) du collagène des mammouths de Mezhyrich (Epigravettien, Ukraine): implications paléoécologiques. L'Anthropologie 118, 504–517 (2014).

    Article  Google Scholar 

  57. 57.

    Johnson, C.N. Determinants of loss of mammal species during the late Quaternary ‘megafauna’ extinctions: life history and ecology, but not body size. Proc. R. Soc. B 269, 2221–2227 (2009)..

  58. 58.

    Higham, T. et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306–309 (2014).

    CAS  Article  Google Scholar 

  59. 59.

    Mook, W. G. & Streurman, H. J. Physical and chemical aspects of radiocarbon dating. In Proc. 1st Symposium on C and Archaeology (eds Mook, W. G. & Waterbolk, H. T.) 31–55 (PACT, Groningen, 1983).

  60. 60.

    Wijma, S., Aerts, A. T., van der Plicht, J. & Zondervan, A. The Groningen AMS facility. Nucl. Instrum. Methods Phys. Res. B 113, 465–469 (1996).

    CAS  Article  Google Scholar 

  61. 61.

    Aerts-Bijma, A. T., Meijer, H. A. J. & van der Plicht, J. AMS sample handling in Groningen. Nucl. Instrum. Methods Phys. Res. B 123, 221–225 (1997).

    CAS  Article  Google Scholar 

  62. 62.

    Van der Plicht, J., Wijma, S., Aerts, A. T., Pertuisot, M. H. & Meijer, H. A. J. Status report: the Groningen AMS facility. Nucl. Instrum. Methods Phys. Res. B 172, 58–65 (2000).

    CAS  Article  Google Scholar 

  63. 63.

    Brock, F., Higham, T., Ditchfield, P. & Ramsey, C. B. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52, 103–112 (2010).

    CAS  Article  Google Scholar 

  64. 64.

    Metcalf, J. L. et al. Synergistic roles of climate warming and human occupation in Patagonian megafaunal extinctions during the Last Deglaciation. Sci. Adv. 2, e1501682 (2016).

    Article  Google Scholar 

  65. 65.

    Turney, C. S. M., Jones, R. T., Thomas, Z. A., Palmer, J. G. & Brown, D. Extreme wet conditions coincident with Bronze Age abandonment of upland areas in Britain. Anthropocene 13, 69–79 (2016).

    Article  Google Scholar 

  66. 66.

    Finkelstein, I. & Piasetzky, E. Radiocarbon dating the Iron Age in the Levant: a Bayesian model for six ceramic phases and six transitions. Antiquity 84, 374–385 (2010).

    Article  Google Scholar 

  67. 67.

    Lienkaemper, J. J. & Ramsey, C. B. OxCal: versatile tool for developing paleoearthquake chronologies—a primer. Seismol. Res. Lett. 80, 431–434 (2009).

    Article  Google Scholar 

  68. 68.

    Kohn, M. J. You are what you eat. Science 283, 335–336 (1999).

    CAS  Article  Google Scholar 

  69. 69.

    Szpak, P. Complexities of nitrogen isotope biogeochemistry in plant–soil systems: implications for the study of ancient agricultural and animal management practices. Front. Plant Sci. 5, 288 (2014).

    Article  Google Scholar 

  70. 70.

    Nadelhoffer, K. et al. 15N natural abundances and N use by tundra plants. Oecologia 107, 386–394 (1996).

    CAS  Article  Google Scholar 

  71. 71.

    Michener, R. & Lajtha, K. Stable Isotopes in Ecology and Environmental Science (Blackwell, Oxford, 2007).

  72. 72.

    Kuitems, M. et al. Carbon and nitrogen stable isotopes of well-preserved, middle Pleistocene bone collagenfrom Schöningen (Germany) and their palaeoecological implications. J. Hum. Evol. 89, 105–113 (2015).

    Article  Google Scholar 

  73. 73.

    Brotherton, P. et al. Neolithic mitochondrial haplogroup H genomes and the genetic origins of Europeans. Nat. Commun. 4, 1764 (2013).

    Article  Google Scholar 

  74. 74.

    Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 5, pdb.prot5448 (2010).

    Article  Google Scholar 

  75. 75.

    Mitchell, K. J. et al. Ancient mitochondrial DNA reveals convergent evolution of giant short-faced bears (Tremarctinae) in North and South America. Biol. Lett. 12, 20160062 (2016).

    Article  Google Scholar 

  76. 76.

    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).

    Article  Google Scholar 

  77. 77.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  Article  Google Scholar 

  78. 78.

    Rohling, E. J. et al. New constraints on the timing of sea level fluctuations during early to middle MarineIsotope Stage 3. Paleoceanography 23, PA3219 (2008).

  79. 79.

    Ehlers, J. & Gibbard, P. L. Quaternary Glaciations: Extent and Chronology Parts 1-3 (Developments inQuaternary Science 2, Elsevier, Amsterdam, 2004).

  80. 80.

    Andersen, K. K. et al. The Greenland ice core chronology 2005, 15–42 ka. Part 1: constructing the time scale. Quat. Sci. Rev. 25, 3246–3257 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank P.-O. Antoine for discussion, J. Saarinen for estimating the body mass of Elasmotherium, the Museum of the IPAE UB RAS and L. Petrov for providing bone samples for analysis, P. Campos for help with the stable isotope data, S. Brace for initial work on ancient DNA, the team of the ORAU for AMS dating and J. Hagstrum for an early stimulus to the study. Funding was provided by the Australian Research Council and Natural Environment Research Council, UK (grant number NE/G005982/1). Funding for part of the research was provided by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)—ERC grant 324139 ‘PalaeoChron’ award to T.H. This study was partly supported by the programme of the UB RAS (project number 18-4-4-3).

Author information

Affiliations

Authors

Contributions

P.K., T.v.K., A.J.S., A.M.L. and A.C. conceived the project. P.K., A.T. and E.P. provided samples and contextual information. Ancient DNA work and phylogenetic analyses were performed by K.J.M. and coordinated by A.C. Radiocarbon data were obtained and analysed by T.H., T.D. and D.C. at the ORAU, and J.v.d.P. at the CIO, while C.T. and T.H. undertook age modelling. Stable isotope analysis was performed and interpreted by M.K., while C.T. and A.J.S. provided context on climate and extinctions, respectively. All authors contributed to interpretation of the results and writing of the manuscript, which was coordinated by A.M.L.

Corresponding author

Correspondence to Adrian M. Lister.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Specimen provenances; detailed methods for DNA, stable isotope and radiocarbon dating analysis; Supplementary Figures 1,2 and Supplementary Tables 1–9; OxCal code for PHASE modelling; Supplementary References

Reporting Summary

Supplementary Table 1

Specimen numbers, localities, and summary of radiocarbon results. Raw radiocarbon dates are quoted ± 1-sigma; calibrated dates as 2-sigma range rounded to the nearest 10

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kosintsev, P., Mitchell, K.J., Devièse, T. et al. Evolution and extinction of the giant rhinoceros Elasmotherium sibiricum sheds light on late Quaternary megafaunal extinctions. Nat Ecol Evol 3, 31–38 (2019). https://doi.org/10.1038/s41559-018-0722-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing