Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tropical forest leaves may darken in response to climate change


Tropical forest leaf albedo (reflectance) greatly impacts how much energy the planet absorbs; however; little is known about how it might be impacted by climate change. Here, we measure leaf traits and leaf albedo at ten 1-ha plots along a 3,200-m elevation gradient in Peru. Leaf mass per area (LMA) decreased with warmer temperatures along the elevation gradient; the distribution of LMA was positively skewed at all sites indicating a shift in LMA towards a warmer climate and future reduced tropical LMA. Reduced LMA was significantly (P < 0.0001) correlated with reduced leaf near-infrared (NIR) albedo; community-weighted mean NIR albedo significantly (P < 0.01) decreased as temperature increased. A potential future 2 °C increase in tropical temperatures could reduce lowland tropical leaf LMA by 6–7 g m2 (5–6%) and reduce leaf NIR albedo by 0.0015–0.002 units. Reduced NIR albedo means that leaves are darker and absorb more of the Sun’s energy. Climate simulations indicate this increased absorbed energy will warm tropical forests more at high CO2 conditions with proportionately more energy going towards heating and less towards evapotranspiration and cloud formation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Individual leaf albedo versus LMA.
Fig. 2: Basal area-weighted plot averaged albedo.
Fig. 3: Four simulations averaging the last 50 years of a 100-year simulation.
Fig. 4: Climate simulations with reduced tropical leaf NIR albedo.

Data availability

All the data in this paper can be found in a data repository at the following website:


  1. 1.

    Betts, R. Implications of land ecosystem-atmosphere interactions for strategies for climate change adaptation and mitigation. Tellus B 59, 602–615 (2007).

    Article  CAS  Google Scholar 

  2. 2.

    Loarie, S. R., Lobell, D. B., Asner, G. P. & Field, C. B. Land-cover and surface water change drive large albedo increases in South America. Earth Interact. 15, 1–16 (2011).

    Article  Google Scholar 

  3. 3.

    Asner, G. P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ. 64, 234–253 (1998).

    Article  Google Scholar 

  4. 4.

    Serbin, S. P., Singh, A., McNeil, B. E., Kingdon, C. C. & Townsend, P. A. Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species. Ecol. Appl. 24, 1651–1669 (2014).

    Article  Google Scholar 

  5. 5.

    Richardson, A. D., Duigan, S. P. & Berlyn, G. P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 153, 185–194 (2002).

    Article  CAS  Google Scholar 

  6. 6.

    Jacquemoud, S. & Baret, F. PROSPECT: a model of leaf optical properties spectra. Remote Sens. Environ. 34, 75–91 (1990).

    Article  Google Scholar 

  7. 7.

    Asner, G. P. & Martin, R. E. Spectral and chemical analysis of tropical forests: scaling from leaf to canopy levels. Remote Sens. Environ. 112, 3958–3970 (2008).

    Article  Google Scholar 

  8. 8.

    Enquist, B. J. et al. Scaling from traits to ecosystems: developing a general trait driver theory via integratingtrait-based and metabolic scaling theories. Adv. Ecol. Res. 52, 249–318 (2015).

    Article  Google Scholar 

  9. 9.

    Enquist, B. J. et al. Assessing trait-based scaling theory in tropical forests spanning a broad temperature gradient. Glob. Ecol. Biogeogr. 26, 1357–1373 (2017).

    Article  Google Scholar 

  10. 10.

    Savage, V. M., Webb, C. T. & Norberg, J. A general multi-trait-based framework for studying the effects of biodiversity on ecosystem functioning. J. Theor. Biol. 247, 213–229 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Norberg, J. et al. Phenotypic diversity and ecosystem functioning in changing environments: a theoretical framework. Proc. Natl Acad. Sci. USA 98, 11376–11381 (2001).

    Article  CAS  Google Scholar 

  12. 12.

    Asner, G. P. et al. Scale dependence of canopy trait distributions along a tropical forest elevation gradient. New Phytol. 214, 973–988 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Feeley, K. J. et al. Upslope migration of Andean trees. J. Biogeogr. 38, 783–791 (2011).

    Article  Google Scholar 

  14. 14.

    Feeley, K. J. Distributional migrations, expansions, and contractions of tropical plant species as revealed in dated herbarium records. Glob. Chang. Biol. 18, 1335–1341 (2012).

    Article  Google Scholar 

  15. 15.

    Asner, G. P. & Martin, R. E. Convergent elevation trends in canopy chemical traits of tropical forests. Glob. Chang. Biol. 22, 2216–2227 (2016).

    Article  PubMed  Google Scholar 

  16. 16.

    Körner, C. H., Bannister, P. & Mark, A. F. Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. Oecologia 69, 577–588 (1986).

    Article  PubMed  Google Scholar 

  17. 17.

    Roderick, M. L., Berry, S. L. & Noble, I. R. A framework for understanding the relationship between environment and vegetation based on the surface area to volume ratio of leaves. Funct. Ecol. 14, 423–437 (2000).

    Article  Google Scholar 

  18. 18.

    Atkin, O. K., Loveys, B. R., Atkinson, L. J. & Pons, T. L. Phenotypic plasticity and growth temperature: understanding interspecific variability. J. Exp. Bot. 57, 267–281 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Ball, M. C. et al. Space and time dependence of temperature and freezing in evergreen leaves. Funct. Plant Biol. 29, 1259–1272 (2002).

    Article  Google Scholar 

  20. 20.

    Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol. 182, 565–588 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Asner, G. P. et al. Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests. Ecol. Appl. 21, 85–98 (2011).

    Article  PubMed  Google Scholar 

  22. 22.

    Niinemets, Ü. Research review. Components of leaf dry mass per area—thickness and density—alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol. 144, 35–47 (1999).

    Article  Google Scholar 

  23. 23.

    Féret, J.-B. et al. PROSPECT-4 and 5: advances in the leaf optical properties model separating photosyntheticpigments. Remote Sens. Environ. 112, 3030–3043 (2008).

  24. 24.

    Féret, J-B., Gitelson, A. A., Noble, S. D. & Jacquemoud, S. PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ. 193, 204–215 (2017).

    Article  Google Scholar 

  25. 25.

    Ceccato, P., Flasse, S., Tarantola, S., Jacquemoud, S. & Grégoire, J-M. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens. Environ. 77, 22–33 (2001).

    Article  Google Scholar 

  26. 26.

    Collins, W. D. et al. The Community Climate System Model version 3 (CCSM3). J. Clim. 19, 2122–2143 (2006).

    Article  Google Scholar 

  27. 27.

    Dickinson, R. E., Sellers, P. J. & Kimes, D. S. Albedos of homogeneous semi-infinite canopies: comparison of two-stream analytic and numerical solutions. J. Geophys. Res. Atmos. 92, 4282–4286 (1987).

    Article  Google Scholar 

  28. 28.

    Doughty, C. E., Field, C. B. & McMillan, A. M. S. Can crop albedo be increased through the modification of leaf trichomes, and could this cool regional climate? Clim. Change 104, 379–387 (2011).

    Article  CAS  Google Scholar 

  29. 29.

    Collins, M. et al. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 29 (IPCC, Cambridge Univ. Press, 2013).

  30. 30.

    Doughty, C. E. et al. Can leaf spectroscopy predict leaf and forest traits along a Peruvian tropical forest elevation gradient? J. Geophys. Res. Biogeosci. 122, 2952–2965 (2017).

    Article  Google Scholar 

  31. 31.

    Swann, A. L. S., Fung, I. Y. & Chiang, J. C. H. Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc. Natl Acad. Sci. USA 109, 712–716 (2012).

    Article  PubMed  Google Scholar 

  32. 32.

    Doughty, C. E., Loarie, S. R. & Field, C. B. Theoretical impact of changing albedo on precipitation at the southernmost boundary of the ITCZ in South America. Earth Interact. 16, 1–14 (2012).

    Article  Google Scholar 

  33. 33.

    Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    Article  CAS  Google Scholar 

  35. 35.

    Chadwick, D. K. & Asner, G. P. Organismic-scale remote sensing of canopy foliar traits in lowland tropical forests. Remote Sens. 8, 87 (2016).

    Article  Google Scholar 

  36. 36.

    Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708 (2009).

    Article  Google Scholar 

  37. 37.

    Reich, P. B. & Flores-Moreno, H. Peeking beneath the hood of the leaf economics spectrum. New Phytol. 214, 1395–1397 (2017).

    Article  PubMed  Google Scholar 

  38. 38.

    Onoda, Y. et al. Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytol. 214, 1447–1463 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Chavana-Bryant, C. et al. Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements. New Phytol. 214, 1049–1063 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Huang, M. et al. Velocity of change in vegetation productivity over northern high latitudes. Nat. Ecol. Evol. 1, 1649–1654 (2017).

    Article  PubMed  Google Scholar 

  41. 41.

    Malhi, Y. & Wright, J. Spatial patterns and recent trends in the climate of tropical rainforest regions. Phil.Trans. R. Soc. B 359, 311–329 (2004).

    Article  PubMed  Google Scholar 

  42. 42.

    Duffy, P. B., Brando, P., Asner, G. P. & Field, C. B. Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl Acad. Sci. USA 112, 13172–13177 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Thomas, S. C. Increased leaf reflectance in tropical trees under elevated CO2. Glob. Chang. Biol. 11, 197–202 (2005).

    Article  Google Scholar 

  44. 44.

    Michaletz, S. T. et al. The energetic and carbon economic origins of leaf thermoregulation. Nat. Plants 2, 16129 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Helliker, B. R. & Richter, S. L. Subtropical to boreal convergence of tree-leaf temperatures. Nature 454, 511–514 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    van der Sleen, P. et al. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nat. Geosci. 8, 24–28 (2015).

    Article  CAS  Google Scholar 

  48. 48.

    Doughty, C. E. & Goulden, M. L. Are tropical forests near a high temperature threshold?. J. Geophys. Res. Biogeosci 113, G00B07 (2008).

    Google Scholar 

  49. 49.

    Mau, A. C., Reed, S. C., Wood, T. E. & Cavaleri, M. A. Temperate and tropical forest canopies are already functioning beyond their thermal thresholds for photosynthesis. Forests 9, 47 (2018).

    Article  Google Scholar 

  50. 50.

    Zhu, P. et al. Elevated atmospheric CO2 negatively impacts photosynthesis through radiative forcing and physiology-mediated climate feedback. Geophys. Res. Lett. 44, 1956–1963 (2017).

    CAS  Google Scholar 

  51. 51.

    GEMTraits: A Database and R Package for Accessing and Analyzing Plant Functional Traits from the Global Ecosystems Monitoring Network version 1 (Univ. Oxford, 2017);

  52. 52.

    Malhi, Y. et al. The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. New Phytol. 214, 1019–1032 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M. & Rosinski, J. A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J. Clim. 21, 5145–5153 (2008).

    Article  Google Scholar 

  54. 54.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  55. 55.

    Olivier, J. G. J., Janssens-Maenhout, G., Muntean, M. & Peters, J. A. H. W. Trends in Global CO 2 Emissions: 2016 Report (PBL Netherlands Environmental Assessment Agency and European Commission, Joint Research Centre, 2016);

Download references


This work is a product of the GEM network (, ABERG (, the Amazon Forest Inventory Network ( and the Carnegie Spectranomics Project ( research consortia. The field campaign was funded by a grant to Y.M. from the UK Natural Environment Research Council (NERC) (grant no. NE/J023418/1), with additional support from European Research Council advanced investigator grants GEM-TRAITS (no. 321131) and T-FORCES (no. 291585), and a John D. and Catherine T. MacArthur Foundation grant to G.P.A. We thank the Servicio Nacional de Áreas Naturales Protegidas por el Estado and the personnel of the Manu and Tambopata National Parks for logistical assistance and permission to work in the protected areas. We also thank the Explorers’ Inn and the Pontifical Catholic University of Peru, as well as Asociación para la Conservación de la Cuenca Amazónica. We thankE. Cosio (Pontifical Catholic University of Peru) for his assistance with research permissions and sample analysis and storage. Taxonomic work at the Carnegie Institution was helped by R. Tupayachi, F. Sinca and N. Jaramillo. B.B. was supported by a United States National Science Foundation (NSF) graduate research fellowship and doctoral dissertation improvement grant (no. DEB-1209287), as well as an NERC independent research fellowship (grant no. NE/M019160/1). G.P.A. and the Spectranomics team were supported by the endowment of the Carnegie Institution for Science and a grant from the NSF (no. DEB-1146206). S.D. was partially supported by a Visiting Professorship grant from the Leverhulme Trust, UK. Y.M. was also supported by the Jackson Foundation. G.R.G. was supported by funding from the European Community’s Seventh Framework Program (FP7/2007–2013) under grant agreement no. 290605 (COFUND: PSI-FELLOW). C.E.D. received funding from the John Fell Fund, Google and a NASA grant (no. 80NSSC17K0749). Climate simulations were run on Monsoon, Northern Arizona University’s supercomputer.

Author information




C.E.D. wrote the paper with contributions from G.P.A., B.B., G.R.G. and R.E.M. P.E.S.-A. and C.E.D. collected the spectral data. P.E.S.-A., A.S., L.P.B., G.R.G., B.B., N.S., B.J.E., R.E.M., G.P.A., S.D. and Y.M. provided data or support. C.E.D. analysed the data and ran the climate and leaf reflectance simulations.

Corresponding author

Correspondence to Christopher E. Doughty.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures and Tables

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Doughty, C.E., Santos-Andrade, P.E., Shenkin, A. et al. Tropical forest leaves may darken in response to climate change. Nat Ecol Evol 2, 1918–1924 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing