Productive instability of coral reef fisheries after climate-driven regime shifts

A Publisher Correction to this article was published on 29 November 2018

Abstract

Tropical coastal communities are highly reliant on coral reefs, which provide nutrition and employment for millions of people. Climate-driven coral bleaching events are fundamentally changing coral reef ecosystems and are predicted to reduce productivity of coral reef fish and fisheries, with significant implications for food security and livelihoods. Yet evidence of long-term bleaching impacts on coral reef fishery productivity is lacking. Here, we analyse over 20 years of fish abundance, catch and habitat data to assess long-term impacts of climate-driven coral mass mortality and regime shifts on nearshore artisanal coral reef fisheries in the Seychelles. Contrary to expectations, total catch and mean catch rates were maintained or increased after coral bleaching, consistent with increasing abundance of herbivorous target species in underwater surveys, particularly on macroalgal-dominated reefs. Catch instability increased as habitats followed divergent post-disturbance trajectories and the distribution of target species became more spatially variable, potentially impacting fisher incomes and local market supply chains. Although coral bleaching increased fishery dependence on herbivore species, our results show that climate-impacted reefs can still provide livelihoods and fish protein for coastal communities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Temporal change in mean CPUE (1994–2016) for each target species group.
Fig. 2: Temporal change in CPUE variability (1994–2016) for target species groups landed by fixed trap gears.
Fig. 3: Temporal change in total catches (1994–2016) for each target species group in each region.
Fig. 4: Spatial heterogeneity in resource biomass and benthic habitat from 1994 to 2014.

Data availability

All analyses were conducted in R 3.4.254 using mgcv51 and vegan55. Model predictions and R analysis scripts are provided at github.com/jpwrobinson/prod-instability. The fishery-dependent dataset is not publicly available but may be requested from the authors with permission of SFA.

References

  1. 1.

    Pauly, D. et al. Towards sustainability in world fisheries. Nature 418, 689–695 (2002).

    CAS  PubMed  Google Scholar 

  2. 2.

    Tacon, A. G. J. & Metian, M. Fish matters: importance of aquatic foods in human nutrition and global food supply. Rev. Fish. Sci. 21, 22–38 (2013).

    CAS  Google Scholar 

  3. 3.

    Teh, L. S. L., Teh, L. C. L. & Sumaila, U. R. A global estimate of the number of coral reef fishers. PLoS ONE 8, e65397 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    CAS  PubMed  Google Scholar 

  5. 5.

    Halford, A. R. & Caley, M. J. Towards an understanding of resilience in isolated coral reefs. Glob. Change Biol. 15, 3031–3045 (2009).

    Google Scholar 

  6. 6.

    Pratchett, M. S., Hoey, A. S. & Wilson, S. K. Reef degradation and the loss of critical ecosystem goods and services provided by coral reef fishes. Curr. Opin. Env. Sust. 7, 37–43 (2014).

    Google Scholar 

  7. 7.

    Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).

    CAS  PubMed  Google Scholar 

  8. 8.

    Rogers, A., Blanchard, J. L. & Mumby, P. J. Vulnerability of coral reef fisheries to a loss of structural complexity. Curr. Biol. 24, 1000–1005 (2014).

    CAS  PubMed  Google Scholar 

  9. 9.

    Bell, J. D. et al. Mixed responses of tropical Pacific fisheries and aquaculture to climate change. Nat. Clim. Change 3, 591–599 (2013).

    Google Scholar 

  10. 10.

    Cinner, J. E. et al. Vulnerability of coastal communities to key impacts of climate change on coral reef fisheries. Glob. Environ. Change 22, 12–20 (2012).

    Google Scholar 

  11. 11.

    Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an isolated coral reef system following severe disturbance. Science 340, 69–71 (2013).

    PubMed  Google Scholar 

  12. 12.

    Graham, N. A. J. et al. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv. Biol. 21, 1291–1300 (2007).

    PubMed  Google Scholar 

  13. 13.

    McClanahan, T. R., Hicks, C. C. & Darling, E. S. Malthusian overfishing and efforts to overcome it on Kenyan coral reefs. Ecol. Appl. 18, 1516–1529 (2008).

    PubMed  Google Scholar 

  14. 14.

    Dalzell, P., Adams, T. J. H. & Polunin, N. V. C. Coastal fisheries in the Pacific Islands. Oceanogr. Mar. Biol. 34, 395–531 (1996).

    Google Scholar 

  15. 15.

    Hawkins, J. P., Roberts, C. M. & Gell, F. R. Effects of trap fishing on reef fish communities. Aquat. Conserv. 17, 111–132 (2007).

    Google Scholar 

  16. 16.

    Daw, T. M., Robinson, J. & Graham, N. A. J. Perceptions of trends in Seychelles artisanal trap fisheries: comparing catch monitoring, underwater visual census and fishers’ knowledge. Environ. Conserv. 38, 75–88 (2011).

    Google Scholar 

  17. 17.

    Robinson, J. et al. The importance of targeted spawning aggregation fishing to the management of Seychelles’ trap fishery. Fish. Res. 112, 96–103 (2011).

    Google Scholar 

  18. 18.

    Hempson, T. N., Graham, N. A. J., MacNeil, M. A., Hoey, A. S. & Wilson, S. K. Ecosystem regime shifts disrupt trophic structure. Ecol. Appl. 28, 191–200 (2018).

    PubMed  Google Scholar 

  19. 19.

    Chong-Seng, K. M., Nash, K. L., Bellwood, D. R. & Graham, N. A. J. Macroalgal herbivory on recovering versus degrading coral reefs. Coral Reefs 33, 409–419 (2014).

    Google Scholar 

  20. 20.

    Evans, R. D., Wilson, S. K., Field, S. N. & Moore, J. A. Y. Importance of macroalgal fields as coral reef fish nursery habitat in north-west Australia. Mar. Biol. 161, 599–607 (2014).

    Google Scholar 

  21. 21.

    Hoey, A. S. & Bellwood, D. R. Suppression of herbivory by macroalgal density: a critical feedback on coral reefs? Ecol. Lett. 14, 267–273 (2011).

    PubMed  Google Scholar 

  22. 22.

    Rogers, A., Blanchard, J. L. & Mumby, P. J. Fisheries productivity under progressive coral reef degradation. J. Appl. Ecol. 55, 1041–1049 (2018).

    Google Scholar 

  23. 23.

    Russ, G. R., Questel, S.-L. A., Rizzari, J. R. & Alcala, A. C. The parrotfish–coral relationship: refuting the ubiquity of a prevailing paradigm. Mar. Biol. 162, 2029–2045 (2015).

    Google Scholar 

  24. 24.

    Wilson, S. K. et al. Exploitation and habitat degradation as agents of change within coral reef fish communities. Glob. Change Biol. 14, 2796–2809 (2008).

    Google Scholar 

  25. 25.

    Wilson, S. K. et al. Climatic conditions and nursery habitat quality provide indicators of reef fish recruitment strength. Limnol. Oceanogr. 62, 1868–1880 (2017).

    Google Scholar 

  26. 26.

    Halpern, B. S., Gaines, S. D. & Warner, R. R. Habitat size, recruitment, and longevity as factors limiting population size in stage-structured species. Am. Nat. 165, 82–94 (2005).

    PubMed  Google Scholar 

  27. 27.

    Rouyer, T., Sadykov, A., Ohlberger, J. & Stenseth, N. C. Does increasing mortality change the response of fish populations to environmental fluctuations? Ecol. Lett. 15, 658–665 (2012).

    PubMed  Google Scholar 

  28. 28.

    Grandcourt, E. M. Demographic characteristics of a selection of exploited reef fish from the Seychelles: preliminary study. Mar. Freshw. Res. 53, 123–130 (2002).

    Google Scholar 

  29. 29.

    Allison, E. H. & Ellis, F. The livelihoods approach and management of small-scale fisheries. Mar. Policy 25, 377–388 (2001).

    Google Scholar 

  30. 30.

    Cinner, J. E., Daw, T. & McClanahan, T. R. Socioeconomic factors that affect artisanal fishers’ readiness to exit a declining fishery. Conserv. Biol. 23, 124–130 (2009).

    CAS  PubMed  Google Scholar 

  31. 31.

    Johnson, A. E. Reducing bycatch in coral reef trap fisheries: escape gaps as a step towards sustainability. Mar. Ecol. Prog. Ser. 415, 201–209 (2010).

    Google Scholar 

  32. 32.

    van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci. Rep. 6, 39666 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).

    CAS  PubMed  Google Scholar 

  34. 34.

    Bozec, Y.-M., O’Farrell, S., Bruggemann, J. H., Luckhurst, B. E. & Mumby, P. J. Tradeoffs between fisheries harvest and the resilience of coral reefs. Proc. Natl Acad. Sci. USA 113, 4536–4541 (2016).

    CAS  PubMed  Google Scholar 

  35. 35.

    Nash, K. L., Graham, N. A. J., Jennings, S., Wilson, S. K. & Bellwood, D. R. Herbivore cross‐scale redundancy supports response diversity and promotes coral reef resilience. J. Appl. Ecol. 53, 646–655 (2015).

    Google Scholar 

  36. 36.

    Grandcourt, E. M. & Cesar, H. S. J. The bio-economic impact of mass coral mortality on the coastal reef fisheries of the Seychelles. Fish. Res. 60, 539–550 (2003).

    Google Scholar 

  37. 37.

    Clifton, J. et al. Marine conservation policy in Seychelles: current constraints and prospects for improvement. Mar. Policy 36, 823–831 (2012).

    Google Scholar 

  38. 38.

    Seychelles Artisanal Fisheries Statistics for 2015 (Seychelles Fishing Authority, 2016).

  39. 39.

    Mees, C. C. Seychelles Artisanal Catch Assessment Survey: Notes for Implementation (Seychelles Fishing Authority, 1990).

  40. 40.

    Currie, J. C. et al. Indian Ocean Dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean. Biogeosciences 10, 6677–6698 (2013).

    CAS  Google Scholar 

  41. 41.

    Wilson, S. K. et al. Climatic forcing and larval dispersal capabilities shape the replenishment of fishes and their habitat-forming biota on a tropical coral reef. Ecol. Evol. 8, 1918–1928 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Robinson, J., Graham, N., Grüss, A., Gerry, C. & Bijoux, J. Fishery benefits from exploiting spawning aggregations not solely dependent on enhanced fish density. Afr. J. Mar. Sci. 39, 269–278 (2017).

    Google Scholar 

  43. 43.

    Smith, C. A. & Sardeshmukh, P. D. The effect of ENSO on the intraseasonal variance of surface temperatures in winter. Int. J. Climatol. 20, 1543–1557 (2000).

    Google Scholar 

  44. 44.

    Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).

    CAS  PubMed  Google Scholar 

  45. 45.

    Saji, N. H. & Yamagata, T. Possible impacts of Indian Ocean Dipole mode events on global climate. Clim. Res. 25, 151–169 (2003).

    Google Scholar 

  46. 46.

    Polunin, N. V. C. & Roberts, C. M. Greater biomass and value of target coral-reef fishes in two small Caribbean marine reserves. Mar. Ecol. Prog. Ser. 100, 167–176 (1993).

    Google Scholar 

  47. 47.

    McClanahan, T. R. et al. The influence of instantaneous variation on estimates of coral reef fish populations and communities. Mar. Ecol. Prog. Ser. 340, 221–234 (2007).

    Google Scholar 

  48. 48.

    Froese, R. & Pauly, D. FishBase (2011); www.fishbase.org

  49. 49.

    Jennings, S. & Polunin, N. V. C. Biased underwater visual census biomass estimates for target-species in tropical reef fisheries. J. Fish Biol. 47, 733–736 (1995).

    Google Scholar 

  50. 50.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer Science & Business Media, Berlin, 2002).

  51. 51.

    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (CRC Press, Boca Raton, 2017).

  52. 52.

    Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).

    PubMed  Google Scholar 

  53. 53.

    Litzow, M. A., Mueter, F. J. & Hobday, A. J. Reassessing regime shifts in the North Pacific: incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability. Glob. Change Biol. 20, 38–50 (2014).

    Google Scholar 

  54. 54.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  55. 55.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.4-4 (2017); https://CRAN.Rproject.org/package=vegan

Download references

Acknowledgements

This paper is dedicated to the memory of Edwin Mark Grandcourt, a pioneering Seychellois fisheries scientist who made significant contributions to establishing the underwater dataset and catch assessment surveys used in this paper, which now help shape our understanding of coral reef fisheries in Seychelles and across the world. This research was supported by the Royal Society (grant nos. CH160077 and UF140691), the Leverhulme Trust (grant no. F/00 125/M) and the Australian Research Council (grant nos. DP1094932 and DE130101705). We thank the fisheries observers and data technicians of SFA for data collection, and Seychelles Marine Parks Authority, Nature Seychelles and Global Vision International for field assistance.

Author information

Affiliations

Authors

Contributions

J.P.W.R., S.K.W. and N.A.J.G. conceived the study and wrote the first draft of the manuscript, with substantial input from S.J. Underwater ecological data were collected by S.K.W., S.J. and N.A.J.G. C.G., J.R., J.L., C.A. and R.G. designed and managed the Seychelles fisheries monitoring programme. J.P.W.R. conducted all statistical analyses.

Corresponding author

Correspondence to James P. W. Robinson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Results, Supplementary Figures 1–16 and Supplementary Tables 1–4

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Robinson, J.P.W., Wilson, S.K., Robinson, J. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat Ecol Evol 3, 183–190 (2019). https://doi.org/10.1038/s41559-018-0715-z

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing