Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dinosaur ossification centres in embryonic birds uncover developmental evolution of the skull

Abstract

Radical transformation of the skull characterizes bird evolution. An increase in the relative size of the brain and eyes was presumably related to the loss of two bones surrounding the eye, the prefrontal and postorbital. We report that ossification centres of the prefrontal and postorbital are still formed in bird embryos, which then fuse seamlessly to the developing nasal and frontal bones, respectively, becoming undetectable in the adult. The presence of a dinosaur-like ossification pattern in bird embryos is more than a trace of their evolutionary past: we show how persistent modularity of ossification centres has allowed for evolutionary re-organization of skull architecture in evolution. Our findings also demonstrate that enigmatic mesodermal cells forming the posterior region of the avian frontal correspond to the ossification centre of the postorbital, not the parietal, and link its failure to develop into an adult bone to its incorporation into the expanded braincase of birds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Early formation of a prefrontal ossification centre in a palaeognathous bird.
Fig. 2: Early formation of a postorbital ossification centre in neognathous birds.
Fig. 3: Evolution of adult circumorbital bones along the dinosaur–bird transition.
Fig. 4: Formation of the prefrontal as a separate ossification centre in fossil Paraves.
Fig. 5: Evolutionary consequences of embryonic modularity.

Similar content being viewed by others

Data availability

High-resolution photographs of the specimens are available in the figures and also can be provided by request.

References

  1. Sidor, C. A. Simplification as a trend in synapsid cranial evolution. Evolution 55, 1419–1442 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Gregory, W. K. ‘Williston’s law’relating to the evolution of skull bones in the vertebrates. Am. J. Phys. Anthropol. 20, 123–152 (1935).

    Article  Google Scholar 

  3. Koyabu, D., Maier, W. & Sanchez-Villagra, M. R. Paleontological and developmental evidence resolve the homology and dual embryonic origin of a mammalian skull bone, the interparietal. Proc. Natl Acad. Sci. USA 109, 14075–14080 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bhullar, B.-A. S. et al. How to make a bird skull: major transitions in the evolution of the avian cranium, paedomorphosis, and the beak as a surrogate hand. Integr. Comp. Biol. 56, 389–403 (2016).

    Article  PubMed  Google Scholar 

  5. Erdmann, K. Zur entwicklungsgeschichte der knochen im schädel des huhnes bis zum zeitpunkt des ausschlüpfens aus dem ei. Zoomorphology 36, 315–400 (1940).

    Google Scholar 

  6. Maxwell, E. E. & Larsson, H. C. E. Comparative ossification sequence and skeletal development of the postcranium of palaeognathous birds (Aves: Palaeognathae). Zool. J. Linn. Soc. 157, 169–196 (2009).

    Article  Google Scholar 

  7. Webb, M. The ontogeny of the cranial bones, cranial peripheral and cranial parasympathetic nerves, together with a study of the visceral muscles of struthio. Acta Zool. 38, 81–203 (1957).

    Article  Google Scholar 

  8. Parker, T. J. Observations on the anatomy and development of Apteryx. Phil. Trans. R. Soc. B 182, 25–134 (1889).

    Google Scholar 

  9. Parker, T. J. Additional observations on the development of Apteryx. Phil. Trans. R. Soc. B 183, 73–84 (1892).

    Article  Google Scholar 

  10. Parker, W. K. On the structure and development of the skull in the ostrich tribe. Phil. Trans. R. Soc. B 156, 113–183 (1866).

    Article  Google Scholar 

  11. Maxwell, E. E. Ossification sequence of the avian order Anseriformes, with comparison to other precocial birds. J. Morphol. 269, 1095–1113 (2008).

    Article  PubMed  Google Scholar 

  12. Starck, J. M. in Current Ornithology Vol. 10 (ed. Power, M.) Ch. 6 (Springer, Boston, 1993).

  13. Maxwell, E. E. Comparative embryonic development of the skeleton of the domestic turkey (Meleagris gallopavo) and other galliform birds. Zoology 111, 242–257 (2008).

    Article  PubMed  Google Scholar 

  14. Parker, W. K. On the structure and development of the skull of the common fowl (Gallus domesticus). Phil. Trans. R. Soc. B 159, 755–807 (1869).

    Article  Google Scholar 

  15. Jollie, M. T. The head skeleton of the chicken and remarks on the anatomy of this region in other birds. J. Morphol. 100, 389–436 (1957).

    Article  Google Scholar 

  16. Nakane, Y. & Tsudzuki, M. Development of the skeleton in Japanese quail embryos. Dev. Growth Differ. 41, 523–534 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Maxwell, E. E. & Harrison, L. B. Ossification sequence of the common tern (Sterna hirundo) and its implications for the interrelationships of the Lari (Aves, Charadriiformes). J. Morphol. 269, 1056–1072 (2008).

    Article  PubMed  Google Scholar 

  18. Maxwell, E. E., Harrison, L. B. & Larsson, H. C. Assessing the phylogenetic utility of sequence heterochrony: evolution of avian ossification sequences as a case study. Zoology 113, 57–66 (2010).

    Article  PubMed  Google Scholar 

  19. Maxwell, E. E. Evolution and Avian Ossification Sequences. PhD thesis, McGill Univ. (2008).

  20. Baumel, J. & Witmer, L. in Handbook of Avian Anatomy: Nomina Anatomica Avium (ed. Baumel, J.) 45–132 (Publications of the Nuttall Ornithological Club, Cambridge, 1993).

  21. Rieppel, O. Studies on skeleton formation in reptiles. v. Patterns of ossification in the skeleton of Alligator mississippiensis Daudin (Reptilia, Crocodylia). Zool. J. Linn. Soc. 109, 301–325 (1993).

    Article  Google Scholar 

  22. Sereno, P. C. & Novas, F. E. The skull and neck of the basal theropod Herrerasaurus ischigualastensis. J. Vertebr. Paleontol. 13, 451–476 (1994).

    Article  Google Scholar 

  23. Colbert, E. H. The Triassic Dinosaur Coelophysis (Museum of Northern Arizona Press, Northern Arizona Society of Science and Art, Flagstaff, 1989).

  24. Nesbitt, S. J. et al. A complete skeleton of a Late Triassic saurischian and the early evolution of dinosaurs. Science 326, 1530–1533 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Currie, P. J. Cranial anatomy of tyrannosaurid dinosaurs from the Late Cretaceous of Alberta, Canada. Acta Palaeontol. Pol. 48, 191–226 (2003).

    Google Scholar 

  26. Brochu, C. A. Osteology of Tyrannosaurus rex: insights from a nearly complete skeleton and high-resolution computed tomographic analysis of the skull. J. Vertebr. Paleontol. 22, 1–138 (2003).

    Article  Google Scholar 

  27. Peyer, K. A reconsideration of Compsognathus from the Upper Tithonian of Canjuers, southeastern France. J. Vertebr. Paleontol. 26, 879–896 (2006).

    Article  Google Scholar 

  28. Lautenschlager, S., Witmer, L. M., Altangerel, P., Zanno, L. E. & Rayfield, E. J. Cranial anatomy of Erlikosaurus andrewsi (Dinosauria, Therizinosauria): new insights based on digital reconstruction. J. Vertebr. Paleontol. 34, 1263–1291 (2014).

    Article  Google Scholar 

  29. Choiniere, J. N., Clark, J. M., Norell, M. A. & Xu, X. Cranial osteology of Haplocheirus sollers Choiniere et al., 2010 (Theropoda: Alvarezsauroidea). Am. Mus. Novit. 51, 1–44 (2014).

    Article  Google Scholar 

  30. Chiappe, L. M., Norell, M. A. & Clark, J. M. The skull of a relative of the stem-group bird Mononykus. Nature 392, 275–278 (1998).

    Article  CAS  Google Scholar 

  31. Turner, A. H., Makovicky, P. J. & Norell, M. A. A review of dromaeosaurid systematics and paravian phylogeny. B. Am. Mus. Nat. Hist. 371, 1–206 (2012).

    Article  Google Scholar 

  32. Foth, C., Tischlinger, H. & Rauhut, O. W. New specimen of Archaeopteryx provides insights into the evolution of pennaceous feathers. Nature 511, 79–82 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Sues, H.-D. The skull of Velociraptor mongoliensis, a small Cretaceous theropod dinosaur from Mongolia. Paläont. Z. 51, 173–184 (1977).

    Article  Google Scholar 

  34. Gao, C., Morschhauser, E. M., Varricchio, D. J., Liu, J. & Zhao, B. A second soundly sleeping dragon: new anatomical details of the Chinese troodontid Mei long with implications for phylogeny and taphonomy. PLoS ONE 7, e45203 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Makovicky, P. J., Norell, M. A., Clark, J. M. & Rowe, T. Osteology and relationships of Byronosaurus jaffei (Theropoda: Troodontidae). Am. Mus. Novit. 3402, 1–32 (2003).

    Article  Google Scholar 

  36. Bever, G. S. & Norell, M. A. The perinate skull of Byronosaurus (Troodontidae) with observations on the cranial ontogeny of paravian theropods. Am. Mus. Novit. 3657, 1–52 (2009).

    Article  Google Scholar 

  37. Xu, X., Wang, X.-L. & Wu, X.-C. A dromaeosaurid dinosaur with a filamentous integument from the Yixian Formation of China. Nature 401, 262–266 (1999).

    Article  CAS  Google Scholar 

  38. Burnham, D. A. in Feathered Dragons: Studies on the Transition from Dinosaurs to Birds (ed. Currie, P. J.) 67–111 (Indiana Univ. Press, Bloomington, 2004).

  39. Ostrom, J. H. Osteology of Deinonychus antirrhopus, an Unusual Theropod from the Lower Cretaceous of Montana Vol. 30 (Peabody Museum of Natural History, Yale Univ. Press, New Haven, 1969).

  40. Norell, M. A. et al. A new dromaeosaurid theropod from Ukhaa Tolgod (Ömnögov, Mongolia). Am. Mus. Novit. 3545, 1–51 (2006).

    Article  Google Scholar 

  41. Barsbold, R. & Osmólska, H. The skull of Velociraptor (Theropoda) from the Late Cretaceous of Mongolia. Acta Palaeontol. Pol. 44, 189–219 (1999).

    Google Scholar 

  42. Currie, P. J. & Zhiming, D. New information on Cretaceous troodontids (Dinosauria, Theropoda) from the People’s Republic of China. Can. J. Earth Sci. 38, 1753–1766 (2001).

    Article  Google Scholar 

  43. Maxwell, W. & Witmer, L. New material of Deinonychus (Dinosauria; Theropoda). J. Vertebr. Paleontol. 16, 51A (1996).

    Google Scholar 

  44. Lü, J. et al. A new oviraptorid dinosaur (Dinosauria: Oviraptorosauria) from the Late Cretaceous of Southern China and its paleobiogeographical implications. Sci. Rep. 5, 11490 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lü, J., Tomida, Y., Azuma, Y., Dong, Z. & Lee, Y.-N. New oviraptorid dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of southwestern Mongolia. Bull. Nat. Sci. Mus. Tokyo Ser. C 30, 95–130 (2004).

    Google Scholar 

  46. Elzanowski, A. A novel reconstruction of the skull of Archaeopteryx. Neth. J. Zool. 51, 207–215 (2001).

    Article  Google Scholar 

  47. Rauhut, O. W. New observations on the skull of Archaeopteryx. Paläont. Z. 88, 211–221 (2014).

    Article  Google Scholar 

  48. Elzanowski, A. & Wellnhofer, P. Cranial morphology of Archaeopteryx: evidence from the seventh skeleton. J. Vertebr. Paleontol. 16, 81–94 (1996).

    Article  Google Scholar 

  49. Tischlinger, H. Neue informationen zum berliner exemplar von Archaeopteryx lithographica H. v. Meyer 1861. Archaeopteryx 23, 33–50 (2005).

    Google Scholar 

  50. Wellnhofer, P. Das fünfte skelettexemplar von Archaeopteryx. Palaeontogr. Abt. A A147, 168–216 (1974).

    Google Scholar 

  51. Mayr, G., Pohl, B. & Peters, D. S. A well-preserved Archaeopteryx specimen with theropod features. Science 310, 1483–1486 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Rauhut, O. W., Foth, C. & Tischlinger, H. The oldest Archaeopteryx (Theropoda: Avialiae): a new specimen from the Kimmeridgian/Tithonian boundary of Schamhaupten, Bavaria. PeerJ 6, e4191 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang, M. & Hu, H. A comparative morphological study of the jugal and quadratojugal in early birds and their dinosaurian relatives. Anat. Rec. 300, 62–75 (2017).

    Article  Google Scholar 

  54. Bhullar, B. A. et al. Birds have paedomorphic dinosaur skulls. Nature 487, 223–226 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Field, D. J. et al. Complete Ichthyornis skull illuminates mosaic assembly of the avian head. Nature 557, 96–100 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. O’Connor, J. K. & Chiappe, L. M. A revision of enantiornithine (Aves: Ornithothoraces) skull morphology. J. Syst. Palaeontol. 9, 135–157 (2011).

    Article  Google Scholar 

  57. Gould, S. J. Hen’s Teeth and Horse’s Toes: Further Reflections in Natural History (WW Norton & Company, New York, 2010).

  58. Ossa-Fuentes, L., Mpodozis, J. & Vargas, A. O. Bird embryos uncover homology and evolution of the dinosaur ankle. Nat. Commun. 6, 8902 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Diaz, R. E. & Trainor, P. A. Hand/foot splitting and the ‘re-evolution’ of mesopodial skeletal elements during the evolution and radiation of chameleons. BMC Evol. Biol. 15, 184 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wake, D. B. Homoplasy: the result of natural selection, or evidence of design limitations? Am. Nat. 138, 543–567 (1991).

    Article  Google Scholar 

  61. Le Lièvre, C. S. & Le Douarin, N. Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. Development 34, 125–154 (1975).

    Google Scholar 

  62. Le Lievre, C. S. Participation of neural crest-derived cells in the genesis of the skull in birds. J. Embryol. Exp. Morphol. 47, 17–37 (1978).

    PubMed  Google Scholar 

  63. Noden, D. M. The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev. Biol. 96, 144–165 (1983).

    Article  CAS  PubMed  Google Scholar 

  64. Evans, D. J. & Noden, D. M. Spatial relations between avian craniofacial neural crest and paraxial mesoderm cells. Dev. Dyn. 235, 1310–1325 (2006).

    Article  PubMed  Google Scholar 

  65. Piekarski, N., Gross, J. B. & Hanken, J. Evolutionary innovation and conservation in the embryonic derivation of the vertebrate skull. Nat. Commun. 5, 5661 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Maddin, H. C., Piekarski, N., Sefton, E. M. & Hanken, J. Homology of the cranial vault in birds: new insights based on embryonic fate-mapping and character analysis. R. Soc. Open Sci. 3, 160356 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Noden, D. M. & Schneider, R. A. in Neural Crest Induction and Differentiation (ed. Saint-Jeannet, J.-P.) 1–23 (Landes Bioscience, Georgetown and Springer, New York, 2006).

  68. Fabbri, M. et al. The skull roof tracks the brain during the evolution and development of reptiles including birds. Nat. Ecol. Evol. 1, 1543 (2017).

    Article  PubMed  Google Scholar 

  69. Hamburger, V. & Hamilton, H. L. A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92 (1951).

    Article  CAS  PubMed  Google Scholar 

  70. Hays, H. & LeCroy, M. Field criteria for determining incubation stage in eggs of the common tern. Wilson Bull. 83, 425–429 (1971).

    Google Scholar 

  71. Hall, B. & Miyake, T. The membranous skeleton: the role of cell condensations in vertebrate skeletogenesis. Anat. Embryol. 186, 107–124 (1992).

    Article  CAS  Google Scholar 

  72. Hall, B. K. & Miyake, T. Divide, accumulate, differentiate: cell condensation in skeletal development revisited. Int. J. Dev. Biol. 39, 881–893 (2004).

    Google Scholar 

  73. Yamazaki, Y., Yuguchi, M., Kubota, S. & Isokawa, K. Whole-mount bone and cartilage staining of chick embryos with minimal decalcification. Biotech. Histochem. 86, 351–358 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Gingerich, P. Skull of Hesperornis and early evolution of birds. Nature 243, 70–73 (1973).

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank B.-A. Bhullar for kindly allowing us to examine and photograph embryos of A. mississippiensis. Special thanks go to M. Sallaberry and J. Mpodozis at Universidad de Chile. This work was funded by grants Anillo ACT172099 and Fondecyt 1150906 (Conicyt, Government of Chile) to A.O.V. This work is dedicated to the memory of Professor Juan Fernández Hidalgo.

Author information

Authors and Affiliations

Authors

Contributions

D.S.-P. and A.O.V. conceived and planned the research. D.S.-P. and D.N.-L. collected, cleared and stained embryos and analysed embryological data. D.S.-P., S.S.-A. and J.O. analysed fossil specimens and palaeontological data. D.S.-P., D.N.-L., S.S.-A., J.O., J.F.B. and A.O.V contributed to the writing of the paper.

Corresponding authors

Correspondence to Daniel Smith-Paredes or Alexander O. Vargas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables and Figures

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith-Paredes, D., Núñez-León, D., Soto-Acuña, S. et al. Dinosaur ossification centres in embryonic birds uncover developmental evolution of the skull. Nat Ecol Evol 2, 1966–1973 (2018). https://doi.org/10.1038/s41559-018-0713-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0713-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing