Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Migratory coupling between predators and prey

Abstract

Animal migrations act to couple ecosystems and are undertaken by some of the world’s most endangered taxa. Predators often exploit migrant prey, but the movements taken by these consumers are rarely studied or understood. We define such movements, where migrant prey induce large-scale movements of predators, as migratory coupling. Migratory coupling can have ecological consequences for the participating prey, predators and the communities they traverse across the landscape. We review examples of migratory coupling in the literature and provide hypotheses regarding conditions favourable for their occurrence. We also provide a framework for interactions induced by migratory coupling and demonstrate their potential community-level impacts by examining other forms of spatial shifts in predators. Migratory coupling integrates the fields of landscape, movement, food web and community ecologies, and represents an understudied frontier in ecology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual display of predator and prey foraging interactions that create conditions for the occurrence of migratory coupling.
Fig. 2: Examples of migratory coupling structures.
Fig. 3: Examples of migratory coupling, described by predators induced by migrant prey, and characteristics of predator and prey movements10,12,21,22,24,35,36,37,67,68,120,121.
Fig. 4: Hypothesized conditions expected to generate gradients in migratory coupling potential.
Fig. 5: Potential community-level impacts of migratory coupling at resident habitats, predator movement corridors and site of exploitation of migrant prey.

Similar content being viewed by others

References

  1. Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 2, 247–260 (2003).

    Article  Google Scholar 

  2. Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Uno, H. & Power, M. E. Mainstem-tributary linkages by mayfly migration help sustain salmonids in a warming river network. Ecol. Lett. 18, 1012–1020 (2015).

    Article  PubMed  Google Scholar 

  4. Furey, N. B., Hinch, S. G., Mesa, M. G. & Beauchamp, D. A. Piscivorous fish exhibit temperature-influenced binge feeding during an annual prey pulse. J. Anim. Ecol. 85, 1307–1317 (2016).

    Article  PubMed  Google Scholar 

  5. Armstrong, J. B. & Bond, M. H. Phenotype flexibility in wild fish: Dolly Varden regulate assimilative capacity to capitalize on annual pulsed subsidies. J. Anim. Ecol. 82, 966–975 (2013).

    Article  PubMed  Google Scholar 

  6. Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68, 619–640 (1990).

    Article  Google Scholar 

  7. Casini, M. et al. Predator transitory spillover induces trophic cascades in ecological sinks. Proc. Natl Acad. Sci. USA 109, 8185–8189 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Borrvall, C. & Ebenman, B. Early onset of secondary extinctions in ecological communities following the loss of top predators. Ecol. Lett. 9, 435–442 (2006).

    Article  PubMed  Google Scholar 

  9. Pace, M., Cole, J., Carpenter, S. & Kitchell, J. Trophic cascades revealed in diverse ecosystems. Trends Ecol. Evol. 14, 483–488 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Durbin, E. G. et al. Late fall-early winter recruitment of Calanus finmarchicus on Georges Bank. Mar. Ecol. Prog. Ser. 151, 103–114 (1997).

    Article  Google Scholar 

  11. Pershing, A. J. et al. Model-based estimates of right whale habitat use in the Gulf of Maine. Mar. Ecol. Prog. Ser. 378, 245–257 (2009).

    Article  Google Scholar 

  12. Firestone, J., Lyons, S. B., Wang, C. & Corbett, J. J. Statistical modeling of North Atlantic right whale migration along the mid-Atlantic region of the eastern seaboard of the United States. Biol. Conserv. 141, 221–232 (2007).

    Article  Google Scholar 

  13. Baumgartner, M. F., Cole, T. V. N., Clapham, P. J. & Mate, B. R. North Atlantic right whale habitat in the lower Bay of Fundy and on the SW Scotian Shelf during 1999–2001. Mar. Ecol. Prog. Ser. 264, 137–154 (2003).

    Article  Google Scholar 

  14. Fujiwara, M. & Caswell, H. Demography of the endangered North Atlantic right whale. Nature 414, 537–541 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Schindler, D. E. et al. Pacific salmon and the ecology of coastal ecosystems. Front. Ecol. Environ. 1, 31–37 (2003).

    Article  Google Scholar 

  16. Gende, S. M., Edwards, R. T., Willson, M. F. & Wipfli, M. S. Pacific salmon in aquatic and terrestrial ecosystems. Bioscience 52, 917–928 (2002).

    Article  Google Scholar 

  17. Levi, T., Wheat, R. E., Allen, J. M. & Wilmers, C. C. Differential use of salmon by vertebrate consumers: implications for conservation. PeerJ 3, e1157 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Weng, K. C. et al. Satellite tagging and cardiac physiology reveal niche expansion in salmon sharks. Science 310, 104–106 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Weng, K. C. et al. Migration of an upper trophic level predator, the salmon shark Lamna ditropis, between distant ecoregions. Mar. Ecol. Prog. Ser. 372, 253–264 (2008).

    Article  Google Scholar 

  20. Hulbert, L. B., Aires-da-Silva, A. M., Gallucci, V. F. & Rice, J. S. Seasonal foraging movements and migratory patterns of female Lamna ditropis tagged in Prince William Sound, Alaska. J. Fish Biol. 67, 490–509 (2005).

    Article  Google Scholar 

  21. Hunt, W. G., Jackman, R. E., Jenkins, M. J., Thelander, C. G. & Lehman, R. N. Northward post-fledgling migration of California bald eagles. J. Raptor Res. 26, 19–23 (1992).

    Google Scholar 

  22. Wheat, R. E., Lewis, S. B., Wang, Y., Levi, T. & Wilmers, C. C. To migrate, stay put, or wander? Varied movement strategies in bald eagles (Haliaeetus leucocephalus). Mov. Ecol. 5, 9 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Elliott, K. H., Elliott, J. E., Wilson, L. K., Jones, I. & Stenerson, K. Density-dependence in the survival and reproduction of bald eagles: linkages to chum salmon. J. Wildl. Manage. 75, 1688–1699 (2011).

    Article  Google Scholar 

  24. Glenn, L. P. & Miller, L. H. Seasonal movements of an Alaska Peninsula brown bear population. Int. Conf. Bear Res. Manag. 4, 307–312 (1980).

    Google Scholar 

  25. Deacy, W., Leacock, W., Armstrong, J. B. & Stanford, J. A. Kodiak brown bears surf the salmon red wave: direct evidence from GPS collared individuals. Ecology 97, 1091–1098 (2016).

    Article  PubMed  Google Scholar 

  26. Schindler, D. E. et al. Riding the crimson tide: mobile terrestrial consumers track phenological variation in spawning of an anadromous fish. Biol. Lett. 9, 20130048 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Armstrong, J. B., Takimoto, G., Schindler, D. E., Hayes, M. M. & Kauffman, M. J. Resource waves: phenological diversity enhances foraging opportunities for mobile consumers. Ecology 97, 1099–1112 (2016).

    Article  PubMed  Google Scholar 

  28. Denton, K. P., Rich, H. B. & Quinn, T. P. Diet, movement, and growth of Dolly Varden in response to sockeye salmon subsidies. Trans. Am. Fish. Soc. 138, 1207–1219 (2009).

    Article  Google Scholar 

  29. Furey, N. B., Hinch, S. G., Lotto, A. G. & Beauchamp, D. A. Extensive feeding on sockeye salmon Oncorhynchus nerka smolts by bull trout Salvelinus confluentus during initial outmigration into a small, unregulated and inland British Columbia river. J. Fish Biol. 86, 392–401 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Furey, N. B. & Hinch, S. G. Bull trout movements match the life history of sockeye salmon: consumers can exploit seasonally distinct resource pulses. Trans. Am. Fish. Soc. 146, 450–461 (2017).

    Article  Google Scholar 

  31. Zamon, J. E., Guy, T. J., Balcomb, K. & Ellifrit, D. Winter observations of southern resident killer whales (Orcinus Orca) near the Columbia River plume during the 2005 spring Chinook salmon (Oncorhynchus Tshawytscha) spawning migration. Northwest. Nat. 88, 193–198 (2007).

    Article  Google Scholar 

  32. Nichol, L. M. & Shackleton, D. M. Seasonal movements and foraging behaviour of resident killer whales (Orcinus orca) in relation to the inshore distribution of salmon (Oncorhynchus spp.) in British Columbia. Can. J. Zool. 74, 983–991 (1996).

    Article  Google Scholar 

  33. Sapir, N., Butler, P. J., Hedenström, A. & Wikelski, M. In: Animal Migration: A Synthesis (eds Milner-Gulland, E. J., Fryxell, J. M. & Sinclair, A. R. E.) 52–67 (Oxford Univ. Press, Oxford, 2011).

    Chapter  Google Scholar 

  34. Alerstam, T. & Lindström Å. in Bird Migration: Physiology and Ecophysiology (ed. Gwinner, E.) 331–351 (Springer, Berlin, Heidelberg, 1990).

  35. Niles, L. J. et al. First results using light level geolocators to track red knots in the Western Hemisphere show rapid and long intercontinental flights and new details of migration pathways. Wader Study Group Bull. 117, 123–130 (2010).

    Google Scholar 

  36. Buehler, D. M. & Piersma, T. Travelling on a budget: predictions and ecological evidence for bottlenecks in the annual cycle of long-distance migrants. Phil. Trans. R. Soc. B 363, 247–266 (2008).

    Article  PubMed  Google Scholar 

  37. Swan, B. L. Migrations of adult horseshoe crabs, Limulus polyphemus, in the Middle Atlantic Bight : a 17-year tagging study. Estuaries 28, 28–40 (2005).

    Article  Google Scholar 

  38. Haramis, G. M. et al. Stable isotope and pen feeding trial studies confirm the value of horseshoe crab Limulus polyphemus eggs to spring migrant shorebirds in Delaware Bay. J. Avian Biol. 38, 367–376 (2007).

    Article  Google Scholar 

  39. Tsipoura, N. & Burger, J. Shorebird diet during spring migration stopover on Delaware Bay. Condor 101, 635–644 (1999).

    Article  Google Scholar 

  40. Morrison, R. I. G., Ross, R. K. & Niles, L. J. Declines in wintering populations of red knots in southern South America. Condor 106, 60–70 (2004).

    Article  Google Scholar 

  41. Karpanty, S. M. et al. Horseshoe crab eggs determine red knot distribution in Delaware Bay. J. Wildl. Manage. 70, 1704–1710 (2006).

    Article  Google Scholar 

  42. Atkinson, P. W. et al. Unravelling the migration and moult strategies of a long-distance migrant using stable isotopes: red knot Calidris canutus movements in the Americas. Ibis 147, 738–749 (2005).

    Article  Google Scholar 

  43. Anderson, E. M., Lovvorn, J. R., Esler, D., Boyd, W. S. & Stick, K. C. Using predator distributions, diet, and condition to evaluate seasonal foraging sites: sea ducks and herring spawn. Mar. Ecol. Prog. Ser. 386, 287–302 (2009).

    Article  Google Scholar 

  44. Fort, J. et al. Meta-population evidence of oriented chain migration in northern gannets (Morus bassanus). Front. Ecol. Environ. 10, 237–242 (2012).

    Article  Google Scholar 

  45. Montevecchi, W. et al. Tracking long-distance migration to assess marine pollution impact. Biol. Lett. 8, 218–221 (2012).

    Article  PubMed  Google Scholar 

  46. Shackell, N. L., Carscadden, J. E. & Miller, D. S. Migration of pre-spawning capelin (Mallotus villosus) as related to temperature on the northern Grand Bank, Newfoundland. ICES J. Mar. Sci. 51, 107–114 (1994).

    Article  Google Scholar 

  47. Montevecchi, W. A., Benvenuti, S., Garthe, S., Davoren, G. K. & Fifield, D. Flexible foraging tactics by a large opportunistic seabird preying on forage- and large pelagic fishes. Mar. Ecol. Prog. Ser. 385, 295–306 (2009).

    Article  Google Scholar 

  48. Montevecchi, W. A. Binary dietary responses of northern gannets Sula bassana indicate changing food web and oceanographic conditions. Mar. Ecol. Prog. Ser. 352, 213–220 (2007).

    Article  Google Scholar 

  49. Moores, J. A., Winters, G. H. & Parsons, L. S. Migrations and biological characteristics of Atlantic mackerel (Scomber scombrus) occurring in Newfoundland waters. J. Fish. Res. Board Can. 32, 1347–1357 (1975).

    Article  Google Scholar 

  50. Dudnik, Y. I., Zilanov, V. K., Kudrin, V. D., Nesvetov, V. A. & Nesterov, A. S. Distribution and biology of Atlantic saury, Scomberesox saurus (Walbaum), in the northwest Atlantic. NAFO Sci. Coun. Stud. 1, 23–29 (1981).

    Google Scholar 

  51. Arkhipkin, A. Age, growth, stock structure and migratory rate of pre-spawning short-finned squid Illex argentinus based on statolith ageing investigations. Fish. Res. 16, 313–338 (1993).

    Article  Google Scholar 

  52. Sorensen, M. C., Hipfner, J. M., Kyser, T. K. & Norris, D. R. Carry-over effects in a Pacific seabird: stable isotope evidence that non-breeding diet quality influences reproductive success. J. Anim. Ecol. 78, 460–467 (2009).

    Article  PubMed  Google Scholar 

  53. Pierotti, R. & Annett, C. A. Diet and reproductive output in seabirds. Bioscience 40, 568–574 (1990).

    Article  Google Scholar 

  54. Calverley, P. M. & Downs, C. T. Movement and home range of Nile crocodiles in Ndumo game reserve, South Africa. Koedoe 57, 1–13 (2015).

    Article  Google Scholar 

  55. Heupel, M. R. et al. Conservation challenges of sharks with continental scale migrations. Front. Mar. Sci. 2, 12 (2015).

    Article  Google Scholar 

  56. Madsen, T. & Shine, R. Seasonal migrations of predators and prey - a study of pythons and rats in tropical Australia. Ecology 77, 149–156 (1996).

    Article  Google Scholar 

  57. Holland, R. A., Wikelski, M. & Wilcove, D. S. How and why do insects migrate? Science 313, 794–796 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Williams, K., Smith, K. & Stephen, F. Emergence of 13-yr periodical cicadas (Cicadidae: Magicicada): phenology, mortality, and predators satiation. Ecology 74, 1143–1152 (1993).

    Article  Google Scholar 

  59. Sweeney, B. & Vannote, R. Population synchrony in mayflies: a predator satiation hypothesis. Ecology 36, 810–821 (1982).

    Google Scholar 

  60. Subalusky, A. L., Dutton, C. L., Rosi, E. J. & Post, D. M. Annual mass drownings of the Serengeti wildebeest migration influence nutrient cycling and storage in the Mara River. Proc. Natl Acad. Sci. USA 114, 7647–7652 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McKinnon, L. et al. Lower predation risk for migratory birds at high latitudes. Science 327, 326–327 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Skov, C. et al. Migration confers survival benefits against avian predators for partially migratory freshwater fish. Biol. Lett. 9, 20121178 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hebblewhite, M. & Merrill, E. H. Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology 90, 3445–3454 (2009).

    Article  PubMed  Google Scholar 

  64. Fryxell, J. M. & Sinclair, A. R. E. Causes and consequences of migration by large herbivores. Trends Ecol. Evol. 3, 237–241 (1988).

    Article  CAS  PubMed  Google Scholar 

  65. Fryxell, J. M., Greever, J. & Sinclair, A. R. E. Why are migratory herbivores so abundant? Am. Nat. 131, 781–798 (1988).

    Article  Google Scholar 

  66. Pyke, G. H., Pulliam, H. R. & Charnov, E. L. Optimal foraging: a selective review of theory and tests. Q. Rev. Biol. 52, 137–154 (1977).

    Article  Google Scholar 

  67. Walton, L. R., Cluff, H. D., Paquet, P. C. & Ramsay, M. A. Movement patterns of barren-ground wolves in the central Canadian Arctic. J. Mammal. 82, 867–876 (2001).

    Article  Google Scholar 

  68. Musiani, M. et al. Differentiation of tundra and boreal coniferous forest wolves: genetics, coat color and foraging ecology. Mol. Ecol. 16, 4149–4170 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Ballard, W. B., Ayres, L. A., Krausman, P. R., Reed, D. T. & Fancy, S. G. Ecology of wolves in relation to a migratory caribou herd in northwest Alaska. Wildl. Monogr. 135, 3–47 (1997).

    Google Scholar 

  70. Trinkel, M., Fleischmann, P. H., Steindorfer, A. F. & Kastberger, G. Spotted hyenas (Crocuta crocuta) follow migratory prey. Seasonal expansion of a clan territory in Etosha, Namibia. J. Zool. 264, 125–133 (2004).

    Article  Google Scholar 

  71. Hofer, H. & East, M. L. The commuting system of Serengeti spotted hyaenas: how a predator copes with migratory prey. III. Attendance and maternal care. Anim. Behav. 46, 575–589 (1993).

    Article  Google Scholar 

  72. Whateley, A. & Brooks, P. M. Numbers and movements of spotted hyaenas in Hluhluwe Game Reserve. Lammargeyer 26, 44–52 (1978).

    Google Scholar 

  73. Sillerozubiri, C. & Gottelli, D. Population ecology of spotted hyena in an equatorial mountain forest. Afr. J. Ecol. 30, 292–300 (1992).

    Article  Google Scholar 

  74. Kittle, A. M., Bukombe, J. K., Sinclair, A. R. E., Mduma, S. A. R. & Fryxell, J. M. Landscape-level movement patterns by lions in western Serengeti: comparing the influence of inter-specific competitors, habitat attributes and prey availability. Mov. Ecol. 4, 1–18 (2016).

    Article  Google Scholar 

  75. Valeix, M. et al. How key habitat features influence large terrestrial carnivore movements: waterholes and African lions in a semi-arid savanna of north-western Zimbabwe. Landscape Ecol. 25, 337–351 (2010).

    Article  Google Scholar 

  76. Holdo, R. M., Holt, R. D., Sinclair, A. R. E., Godley, B. J. & Thirgood, S. in Animal Migration: A Synthesis (eds Milner-Gulland, E. J., Fryxell, J. M. & Sinclair, A. R. E.) 131–143 (Oxford Univ. Press, Oxford, 2011)

    Google Scholar 

  77. Adams, M. S. et al. Intrapopulation diversity in isotopic niche over landscapes: spatial patterns inform conservation of bear–salmon systems. Ecosphere 8, e01843 (2017).

    Article  Google Scholar 

  78. Ben-David, M., Titus, K. & Beier, L. R. Consumption of salmon by Alaskan brown bears: a trade-off between nutritional requirements and the risk of infanticide? Oecologia 138, 465–474 (2004).

    Article  PubMed  Google Scholar 

  79. Barnes, V. G. J. The influence of salmon availability on movements and range of brown bears on southwest Kodiak Island. Int. Conf. Bear Res. Manag. 8, 305–313 (1990).

    Google Scholar 

  80. Shepard, E. L. C. et al. Energy landscapes shape animal movement ecology. Am. Nat. 182, 298–312 (2013).

    Article  PubMed  Google Scholar 

  81. Hein, A. M., Hou, C. & Gillooly, J. F. Energetic and biomechanical constraints on animal migration distance. Ecol. Lett. 15, 104–110 (2012).

    Article  PubMed  Google Scholar 

  82. Shine, R., Sun, L., Zhao, E. & Bonnet, X. A review of 30 years of ecological research on the Shedao pitviper, Gloydius shedaoensis. Herpetol. Nat. Hist. 9, 1–14 (2002).

    Google Scholar 

  83. Shine, R., Sun, L., Fitzgerald, M. & Kearney, M. A radiotelemetric study of movements and thermal biology of insular Chinese pit-vipers (Gloydius shedaoensis, Viperidae). Oikos 100, 342–352 (2003).

    Article  Google Scholar 

  84. Secor, S. M. & Diamond, J. A vertebrate model of extreme physiological regulation. Nature 395, 659–662 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. McCue, M. D., Lillywhite, H. B. & Beaupre, S. J. in Comparative Physiology of Fasting, Starvation, and Food Limitation (ed. McCue, M. D.) 103–131 (Springer, Berlin, 2012).

    Chapter  Google Scholar 

  86. Darimont, C. T., Paquet, P. C. & Reimchen, T. E. Spawning salmon disrupt trophic coupling between wolves and ungulate prey in coastal British Columbia. BMC Ecol. 8, 14 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Smith, T. S., Partridge, S. T. & Schoen, J. W. Interactions of brown bears, Ursus arctos, and gray wolves, Canis lupus, at Katmai National Park and Preserve, Alaska. Can. Field Nat. 118, 247–250 (2003).

    Article  Google Scholar 

  88. Jacoby, M. E. et al. Trophic relations of brown and black bears in several western North American ecosystems. J. Wildl. Manage. 63, 921–929 (1999).

    Article  Google Scholar 

  89. Belant, J. L., Griffith, B., Zhang, Y., Follmann, E. H. & Adams, L. G. Population-level resource selection by sympatric brown and American black bears in Alaska. Polar Biol. 33, 31–40 (2010).

    Article  Google Scholar 

  90. Ainley, D. G., Ballard, G. & Dugger, K. M. Competition among penguins and cetaceans reveals trophic cascades in the western Ross Sea, Antarctica. Ecology 87, 2080–2093 (2006).

    Article  PubMed  Google Scholar 

  91. Cooper, S. M., Holekamp, K. E. & Smale, L. A seasonal feast: long-term analysis of feeding behaviour in the spotted hyena (Crocuta crocuta). Afr. J. Ecol. 37, 149–160 (1999).

    Article  Google Scholar 

  92. Carpenter, S. R., Kitchell, J. F. & Hodgson, J. R. Cascading trophic interactions and lake productivity: fish predation and herbivory can regulate lake ecosystems. Bioscience 35, 634–639 (1985).

    Article  Google Scholar 

  93. Piovia-Scott, J., Yang, L. H. & Wright, A. N. Temporal variation in trophic cascades. Annu. Rev. Ecol. Evol. Syst. 48, 281–300 (2017).

    Article  Google Scholar 

  94. Chesson, P. L. & Huntly, N. The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am. Nat. 150, 519–553 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Kondoh, M. Foraging adaptation and the relationship between food-web complexity and stability. Science 299, 1388–1391 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. McCann, K. S., Rasmussen, J. B. & Umbanhowar, J. The dynamics of spatially coupled food webs. Ecol. Lett. 8, 513–523 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. McMeans, B. C., McCann, K. S., Humphries, M., Rooney, N. & Fisk, A. T. Food web structure in temporally-forced ecosystems. Trends Ecol. Evol. 30, 662–672 (2015).

    Article  PubMed  Google Scholar 

  99. McCauley, D. J. et al. Assessing the effects of large mobile predators on ecosystem connectivity. Ecol. Appl. 22, 1711–1717 (2012).

    Article  PubMed  Google Scholar 

  100. Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Seidler, R. G., Long, R. A., Berger, J., Bergen, S. & Beckmann, J. P. Identifying impediments to long-distance mammal migrations. Conserv. Biol. 29, 99–109 (2015).

    Article  PubMed  Google Scholar 

  102. Berger, J. The last mile: how to sustain long-distance migration in mammals. Conserv. Biol. 18, 320–331 (2004).

    Article  Google Scholar 

  103. Rittenhouse, T. A. G., Semlitsch, R. D. & Thompson, F. R. Survival costs associated with wood frog breeding migrations: effects of timber harvest and drought. Ecology 90, 1620–1630 (2009).

    Article  PubMed  Google Scholar 

  104. Wilcove, D. S. & Wikelski, M. Going, going, gone: is animal migration disappearing. PLoS Biol. 6, e188 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Quinn, T. P. & Adams, D. J. Environmental changes affecting the migratory timing of American shad and sockeye salmon. Ecology 77, 1151–1162 (1996).

    Article  Google Scholar 

  106. Cotton, P. A. Avian migration phenology and global climate change. Proc. Natl Acad. Sci. USA 100, 12219–12222 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Inouye, D. W., Barr, B., Armitage, K. B. & Inouye, B. D. Climate change is affecting altitudinal migrants and hibernating species. Proc. Natl Acad. Sci. USA 97, 1630–1633 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hauser, D. D. W. et al. Decadal shifts in autumn migration timing by Pacific Arctic beluga whales are related to delayed annual sea ice formation. Glob. Change Biol. 23, 2206–2217 (2017).

    Article  Google Scholar 

  109. Altizer, S., Bartel, R. & Han, B. A. Animal migration and infectious disease risk. Science 331, 296–302 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Crozier, L. G. et al. Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon. Evol. Appl. 1, 252–270 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sergeant, C. J., Armstrong, J. B. & Ward, E. J. Predator-prey migration phenologies remain synchronised in a warming catchment. Freshw. Biol. 60, 724–732 (2014).

    Article  Google Scholar 

  112. Muhly, T. B., Semeniuk, C., Massolo, A., Hickman, L. & Musiani, M. Human activity helps prey win the predator-prey space race. PLoS ONE 6, e17050 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Berger, J. Fear, human shields and the redistribution of prey and predators in protected areas. Biol. Lett. 3, 620–623 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ogada, M. O., Woodroffe, R., Oguge, N. O. & Frank, L. G. Limiting depredation by African carnivores: the role of livestock husbandry. Conserv. Biol. 17, 1521–1530 (2003).

    Article  Google Scholar 

  115. Mishra, C. Livestock depredation by large carnivores in the Indian trans-Himalaya: conflict perceptions and conservation prospects. Environ. Conserv. 24, 338–343 (1997).

    Article  Google Scholar 

  116. Muhly, T. B. & Musiani, M. Livestock depredation by wolves and the ranching economy in the northwestern U.S. Ecol. Econ. 68, 2439–2450 (2009).

    Article  Google Scholar 

  117. Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl Acad. Sci. USA 105, 19052–19059 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Eliason, E. J. et al. Differences in thermal tolerance among sockeye salmon populations. Science 332, 109–112 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Fancy, S. G. et al. Seasonal movements of caribou in Arctic Alaska as determined by satellite. Can. J. Zool. 67, 644–650 (1989).

    Article  Google Scholar 

Download references

Acknowledgements

N.B.F. was supported via a Vanier Scholarship from the Natural Sciences and Engineering Research Council of Canada, Canada’s Ocean Tracking Network (OTN), a postdoctoral internship through the MITACS Accelerate program, and the Salish Sea Marine Survival Project (SSMSP publication no. 24). This paper is a contribution from the ideasOTN program. The authors thank B. Harrower for helpful comments on previous drafts and M. Humphries for insightful comments regarding the manuscript's contents.

Author information

Authors and Affiliations

Authors

Contributions

N.B.F., J.B.A., D.A.B. and S.G.H. contributed to the conception, writing and editing of this Review.

Corresponding author

Correspondence to Nathan B. Furey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furey, N.B., Armstrong, J.B., Beauchamp, D.A. et al. Migratory coupling between predators and prey. Nat Ecol Evol 2, 1846–1853 (2018). https://doi.org/10.1038/s41559-018-0711-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0711-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing