Review Article | Published:

Migratory coupling between predators and prey

Nature Ecology & Evolutionvolume 2pages18461853 (2018) | Download Citation

Abstract

Animal migrations act to couple ecosystems and are undertaken by some of the world’s most endangered taxa. Predators often exploit migrant prey, but the movements taken by these consumers are rarely studied or understood. We define such movements, where migrant prey induce large-scale movements of predators, as migratory coupling. Migratory coupling can have ecological consequences for the participating prey, predators and the communities they traverse across the landscape. We review examples of migratory coupling in the literature and provide hypotheses regarding conditions favourable for their occurrence. We also provide a framework for interactions induced by migratory coupling and demonstrate their potential community-level impacts by examining other forms of spatial shifts in predators. Migratory coupling integrates the fields of landscape, movement, food web and community ecologies, and represents an understudied frontier in ecology.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 2, 247–260 (2003).

  2. 2.

    Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).

  3. 3.

    Uno, H. & Power, M. E. Mainstem-tributary linkages by mayfly migration help sustain salmonids in a warming river network. Ecol. Lett. 18, 1012–1020 (2015).

  4. 4.

    Furey, N. B., Hinch, S. G., Mesa, M. G. & Beauchamp, D. A. Piscivorous fish exhibit temperature-influenced binge feeding during an annual prey pulse. J. Anim. Ecol. 85, 1307–1317 (2016).

  5. 5.

    Armstrong, J. B. & Bond, M. H. Phenotype flexibility in wild fish: Dolly Varden regulate assimilative capacity to capitalize on annual pulsed subsidies. J. Anim. Ecol. 82, 966–975 (2013).

  6. 6.

    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68, 619–640 (1990).

  7. 7.

    Casini, M. et al. Predator transitory spillover induces trophic cascades in ecological sinks. Proc. Natl Acad. Sci. USA 109, 8185–8189 (2012).

  8. 8.

    Borrvall, C. & Ebenman, B. Early onset of secondary extinctions in ecological communities following the loss of top predators. Ecol. Lett. 9, 435–442 (2006).

  9. 9.

    Pace, M., Cole, J., Carpenter, S. & Kitchell, J. Trophic cascades revealed in diverse ecosystems. Trends Ecol. Evol. 14, 483–488 (1999).

  10. 10.

    Durbin, E. G. et al. Late fall-early winter recruitment of Calanus finmarchicus on Georges Bank. Mar. Ecol. Prog. Ser. 151, 103–114 (1997).

  11. 11.

    Pershing, A. J. et al. Model-based estimates of right whale habitat use in the Gulf of Maine. Mar. Ecol. Prog. Ser. 378, 245–257 (2009).

  12. 12.

    Firestone, J., Lyons, S. B., Wang, C. & Corbett, J. J. Statistical modeling of North Atlantic right whale migration along the mid-Atlantic region of the eastern seaboard of the United States. Biol. Conserv. 141, 221–232 (2007).

  13. 13.

    Baumgartner, M. F., Cole, T. V. N., Clapham, P. J. & Mate, B. R. North Atlantic right whale habitat in the lower Bay of Fundy and on the SW Scotian Shelf during 1999–2001. Mar. Ecol. Prog. Ser. 264, 137–154 (2003).

  14. 14.

    Fujiwara, M. & Caswell, H. Demography of the endangered North Atlantic right whale. Nature 414, 537–541 (2001).

  15. 15.

    Schindler, D. E. et al. Pacific salmon and the ecology of coastal ecosystems. Front. Ecol. Environ. 1, 31–37 (2003).

  16. 16.

    Gende, S. M., Edwards, R. T., Willson, M. F. & Wipfli, M. S. Pacific salmon in aquatic and terrestrial ecosystems. Bioscience 52, 917–928 (2002).

  17. 17.

    Levi, T., Wheat, R. E., Allen, J. M. & Wilmers, C. C. Differential use of salmon by vertebrate consumers: implications for conservation. PeerJ 3, e1157 (2015).

  18. 18.

    Weng, K. C. et al. Satellite tagging and cardiac physiology reveal niche expansion in salmon sharks. Science 310, 104–106 (2005).

  19. 19.

    Weng, K. C. et al. Migration of an upper trophic level predator, the salmon shark Lamna ditropis, between distant ecoregions. Mar. Ecol. Prog. Ser. 372, 253–264 (2008).

  20. 20.

    Hulbert, L. B., Aires-da-Silva, A. M., Gallucci, V. F. & Rice, J. S. Seasonal foraging movements and migratory patterns of female Lamna ditropis tagged in Prince William Sound, Alaska. J. Fish Biol. 67, 490–509 (2005).

  21. 21.

    Hunt, W. G., Jackman, R. E., Jenkins, M. J., Thelander, C. G. & Lehman, R. N. Northward post-fledgling migration of California bald eagles. J. Raptor Res. 26, 19–23 (1992).

  22. 22.

    Wheat, R. E., Lewis, S. B., Wang, Y., Levi, T. & Wilmers, C. C. To migrate, stay put, or wander? Varied movement strategies in bald eagles (Haliaeetus leucocephalus). Mov. Ecol. 5, 9 (2017).

  23. 23.

    Elliott, K. H., Elliott, J. E., Wilson, L. K., Jones, I. & Stenerson, K. Density-dependence in the survival and reproduction of bald eagles: linkages to chum salmon. J. Wildl. Manage. 75, 1688–1699 (2011).

  24. 24.

    Glenn, L. P. & Miller, L. H. Seasonal movements of an Alaska Peninsula brown bear population. Int. Conf. Bear Res. Manag. 4, 307–312 (1980).

  25. 25.

    Deacy, W., Leacock, W., Armstrong, J. B. & Stanford, J. A. Kodiak brown bears surf the salmon red wave: direct evidence from GPS collared individuals. Ecology 97, 1091–1098 (2016).

  26. 26.

    Schindler, D. E. et al. Riding the crimson tide: mobile terrestrial consumers track phenological variation in spawning of an anadromous fish. Biol. Lett. 9, 20130048 (2013).

  27. 27.

    Armstrong, J. B., Takimoto, G., Schindler, D. E., Hayes, M. M. & Kauffman, M. J. Resource waves: phenological diversity enhances foraging opportunities for mobile consumers. Ecology 97, 1099–1112 (2016).

  28. 28.

    Denton, K. P., Rich, H. B. & Quinn, T. P. Diet, movement, and growth of Dolly Varden in response to sockeye salmon subsidies. Trans. Am. Fish. Soc. 138, 1207–1219 (2009).

  29. 29.

    Furey, N. B., Hinch, S. G., Lotto, A. G. & Beauchamp, D. A. Extensive feeding on sockeye salmon Oncorhynchus nerka smolts by bull trout Salvelinus confluentus during initial outmigration into a small, unregulated and inland British Columbia river. J. Fish Biol. 86, 392–401 (2015).

  30. 30.

    Furey, N. B. & Hinch, S. G. Bull trout movements match the life history of sockeye salmon: consumers can exploit seasonally distinct resource pulses. Trans. Am. Fish. Soc. 146, 450–461 (2017).

  31. 31.

    Zamon, J. E., Guy, T. J., Balcomb, K. & Ellifrit, D. Winter observations of southern resident killer whales (Orcinus Orca) near the Columbia River plume during the 2005 spring Chinook salmon (Oncorhynchus Tshawytscha) spawning migration. Northwest. Nat. 88, 193–198 (2007).

  32. 32.

    Nichol, L. M. & Shackleton, D. M. Seasonal movements and foraging behaviour of resident killer whales (Orcinus orca) in relation to the inshore distribution of salmon (Oncorhynchus spp.) in British Columbia. Can. J. Zool. 74, 983–991 (1996).

  33. 33.

    Sapir, N., Butler, P. J., Hedenström, A. & Wikelski, M. In: Animal Migration: A Synthesis (eds Milner-Gulland, E. J., Fryxell, J. M. & Sinclair, A. R. E.) 52–67 (Oxford Univ. Press, Oxford, 2011).

  34. 34.

    Alerstam, T. & Lindström Å. in Bird Migration: Physiology and Ecophysiology (ed. Gwinner, E.) 331–351 (Springer, Berlin, Heidelberg, 1990).

  35. 35.

    Niles, L. J. et al. First results using light level geolocators to track red knots in the Western Hemisphere show rapid and long intercontinental flights and new details of migration pathways. Wader Study Group Bull. 117, 123–130 (2010).

  36. 36.

    Buehler, D. M. & Piersma, T. Travelling on a budget: predictions and ecological evidence for bottlenecks in the annual cycle of long-distance migrants. Phil. Trans. R. Soc. B 363, 247–266 (2008).

  37. 37.

    Swan, B. L. Migrations of adult horseshoe crabs, Limulus polyphemus, in the Middle Atlantic Bight : a 17-year tagging study. Estuaries 28, 28–40 (2005).

  38. 38.

    Haramis, G. M. et al. Stable isotope and pen feeding trial studies confirm the value of horseshoe crab Limulus polyphemus eggs to spring migrant shorebirds in Delaware Bay. J. Avian Biol. 38, 367–376 (2007).

  39. 39.

    Tsipoura, N. & Burger, J. Shorebird diet during spring migration stopover on Delaware Bay. Condor 101, 635–644 (1999).

  40. 40.

    Morrison, R. I. G., Ross, R. K. & Niles, L. J. Declines in wintering populations of red knots in southern South America. Condor 106, 60–70 (2004).

  41. 41.

    Karpanty, S. M. et al. Horseshoe crab eggs determine red knot distribution in Delaware Bay. J. Wildl. Manage. 70, 1704–1710 (2006).

  42. 42.

    Atkinson, P. W. et al. Unravelling the migration and moult strategies of a long-distance migrant using stable isotopes: red knot Calidris canutus movements in the Americas. Ibis 147, 738–749 (2005).

  43. 43.

    Anderson, E. M., Lovvorn, J. R., Esler, D., Boyd, W. S. & Stick, K. C. Using predator distributions, diet, and condition to evaluate seasonal foraging sites: sea ducks and herring spawn. Mar. Ecol. Prog. Ser. 386, 287–302 (2009).

  44. 44.

    Fort, J. et al. Meta-population evidence of oriented chain migration in northern gannets (Morus bassanus). Front. Ecol. Environ. 10, 237–242 (2012).

  45. 45.

    Montevecchi, W. et al. Tracking long-distance migration to assess marine pollution impact. Biol. Lett. 8, 218–221 (2012).

  46. 46.

    Shackell, N. L., Carscadden, J. E. & Miller, D. S. Migration of pre-spawning capelin (Mallotus villosus) as related to temperature on the northern Grand Bank, Newfoundland. ICES J. Mar. Sci. 51, 107–114 (1994).

  47. 47.

    Montevecchi, W. A., Benvenuti, S., Garthe, S., Davoren, G. K. & Fifield, D. Flexible foraging tactics by a large opportunistic seabird preying on forage- and large pelagic fishes. Mar. Ecol. Prog. Ser. 385, 295–306 (2009).

  48. 48.

    Montevecchi, W. A. Binary dietary responses of northern gannets Sula bassana indicate changing food web and oceanographic conditions. Mar. Ecol. Prog. Ser. 352, 213–220 (2007).

  49. 49.

    Moores, J. A., Winters, G. H. & Parsons, L. S. Migrations and biological characteristics of Atlantic mackerel (Scomber scombrus) occurring in Newfoundland waters. J. Fish. Res. Board Can. 32, 1347–1357 (1975).

  50. 50.

    Dudnik, Y. I., Zilanov, V. K., Kudrin, V. D., Nesvetov, V. A. & Nesterov, A. S. Distribution and biology of Atlantic saury, Scomberesox saurus (Walbaum), in the northwest Atlantic. NAFO Sci. Coun. Stud. 1, 23–29 (1981).

  51. 51.

    Arkhipkin, A. Age, growth, stock structure and migratory rate of pre-spawning short-finned squid Illex argentinus based on statolith ageing investigations. Fish. Res. 16, 313–338 (1993).

  52. 52.

    Sorensen, M. C., Hipfner, J. M., Kyser, T. K. & Norris, D. R. Carry-over effects in a Pacific seabird: stable isotope evidence that non-breeding diet quality influences reproductive success. J. Anim. Ecol. 78, 460–467 (2009).

  53. 53.

    Pierotti, R. & Annett, C. A. Diet and reproductive output in seabirds. Bioscience 40, 568–574 (1990).

  54. 54.

    Calverley, P. M. & Downs, C. T. Movement and home range of Nile crocodiles in Ndumo game reserve, South Africa. Koedoe 57, 1–13 (2015).

  55. 55.

    Heupel, M. R. et al. Conservation challenges of sharks with continental scale migrations. Front. Mar. Sci. 2, 12 (2015).

  56. 56.

    Madsen, T. & Shine, R. Seasonal migrations of predators and prey - a study of pythons and rats in tropical Australia. Ecology 77, 149–156 (1996).

  57. 57.

    Holland, R. A., Wikelski, M. & Wilcove, D. S. How and why do insects migrate? Science 313, 794–796 (2006).

  58. 58.

    Williams, K., Smith, K. & Stephen, F. Emergence of 13-yr periodical cicadas (Cicadidae: Magicicada): phenology, mortality, and predators satiation. Ecology 74, 1143–1152 (1993).

  59. 59.

    Sweeney, B. & Vannote, R. Population synchrony in mayflies: a predator satiation hypothesis. Ecology 36, 810–821 (1982).

  60. 60.

    Subalusky, A. L., Dutton, C. L., Rosi, E. J. & Post, D. M. Annual mass drownings of the Serengeti wildebeest migration influence nutrient cycling and storage in the Mara River. Proc. Natl Acad. Sci. USA 114, 7647–7652 (2017).

  61. 61.

    McKinnon, L. et al. Lower predation risk for migratory birds at high latitudes. Science 327, 326–327 (2010).

  62. 62.

    Skov, C. et al. Migration confers survival benefits against avian predators for partially migratory freshwater fish. Biol. Lett. 9, 20121178 (2013).

  63. 63.

    Hebblewhite, M. & Merrill, E. H. Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology 90, 3445–3454 (2009).

  64. 64.

    Fryxell, J. M. & Sinclair, A. R. E. Causes and consequences of migration by large herbivores. Trends Ecol. Evol. 3, 237–241 (1988).

  65. 65.

    Fryxell, J. M., Greever, J. & Sinclair, A. R. E. Why are migratory herbivores so abundant? Am. Nat. 131, 781–798 (1988).

  66. 66.

    Pyke, G. H., Pulliam, H. R. & Charnov, E. L. Optimal foraging: a selective review of theory and tests. Q. Rev. Biol. 52, 137–154 (1977).

  67. 67.

    Walton, L. R., Cluff, H. D., Paquet, P. C. & Ramsay, M. A. Movement patterns of barren-ground wolves in the central Canadian Arctic. J. Mammal. 82, 867–876 (2001).

  68. 68.

    Musiani, M. et al. Differentiation of tundra and boreal coniferous forest wolves: genetics, coat color and foraging ecology. Mol. Ecol. 16, 4149–4170 (2007).

  69. 69.

    Ballard, W. B., Ayres, L. A., Krausman, P. R., Reed, D. T. & Fancy, S. G. Ecology of wolves in relation to a migratory caribou herd in northwest Alaska. Wildl. Monogr. 135, 3–47 (1997).

  70. 70.

    Trinkel, M., Fleischmann, P. H., Steindorfer, A. F. & Kastberger, G. Spotted hyenas (Crocuta crocuta) follow migratory prey. Seasonal expansion of a clan territory in Etosha, Namibia. J. Zool. 264, 125–133 (2004).

  71. 71.

    Hofer, H. & East, M. L. The commuting system of Serengeti spotted hyaenas: how a predator copes with migratory prey. III. Attendance and maternal care. Anim. Behav. 46, 575–589 (1993).

  72. 72.

    Whateley, A. & Brooks, P. M. Numbers and movements of spotted hyaenas in Hluhluwe Game Reserve. Lammargeyer 26, 44–52 (1978).

  73. 73.

    Sillerozubiri, C. & Gottelli, D. Population ecology of spotted hyena in an equatorial mountain forest. Afr. J. Ecol. 30, 292–300 (1992).

  74. 74.

    Kittle, A. M., Bukombe, J. K., Sinclair, A. R. E., Mduma, S. A. R. & Fryxell, J. M. Landscape-level movement patterns by lions in western Serengeti: comparing the influence of inter-specific competitors, habitat attributes and prey availability. Mov. Ecol. 4, 1–18 (2016).

  75. 75.

    Valeix, M. et al. How key habitat features influence large terrestrial carnivore movements: waterholes and African lions in a semi-arid savanna of north-western Zimbabwe. Landscape Ecol. 25, 337–351 (2010).

  76. 76.

    Holdo, R. M., Holt, R. D., Sinclair, A. R. E., Godley, B. J. & Thirgood, S. in Animal Migration: A Synthesis (eds Milner-Gulland, E. J., Fryxell, J. M. & Sinclair, A. R. E.) 131–143 (Oxford Univ. Press, Oxford, 2011)

  77. 77.

    Adams, M. S. et al. Intrapopulation diversity in isotopic niche over landscapes: spatial patterns inform conservation of bear–salmon systems. Ecosphere 8, e01843 (2017).

  78. 78.

    Ben-David, M., Titus, K. & Beier, L. R. Consumption of salmon by Alaskan brown bears: a trade-off between nutritional requirements and the risk of infanticide? Oecologia 138, 465–474 (2004).

  79. 79.

    Barnes, V. G. J. The influence of salmon availability on movements and range of brown bears on southwest Kodiak Island. Int. Conf. Bear Res. Manag. 8, 305–313 (1990).

  80. 80.

    Shepard, E. L. C. et al. Energy landscapes shape animal movement ecology. Am. Nat. 182, 298–312 (2013).

  81. 81.

    Hein, A. M., Hou, C. & Gillooly, J. F. Energetic and biomechanical constraints on animal migration distance. Ecol. Lett. 15, 104–110 (2012).

  82. 82.

    Shine, R., Sun, L., Zhao, E. & Bonnet, X. A review of 30 years of ecological research on the Shedao pitviper, Gloydius shedaoensis. Herpetol. Nat. Hist. 9, 1–14 (2002).

  83. 83.

    Shine, R., Sun, L., Fitzgerald, M. & Kearney, M. A radiotelemetric study of movements and thermal biology of insular Chinese pit-vipers (Gloydius shedaoensis, Viperidae). Oikos 100, 342–352 (2003).

  84. 84.

    Secor, S. M. & Diamond, J. A vertebrate model of extreme physiological regulation. Nature 395, 659–662 (1998).

  85. 85.

    McCue, M. D., Lillywhite, H. B. & Beaupre, S. J. in Comparative Physiology of Fasting, Starvation, and Food Limitation (ed. McCue, M. D.) 103–131 (Springer, Berlin, 2012).

  86. 86.

    Darimont, C. T., Paquet, P. C. & Reimchen, T. E. Spawning salmon disrupt trophic coupling between wolves and ungulate prey in coastal British Columbia. BMC Ecol. 8, 14 (2008).

  87. 87.

    Smith, T. S., Partridge, S. T. & Schoen, J. W. Interactions of brown bears, Ursus arctos, and gray wolves, Canis lupus, at Katmai National Park and Preserve, Alaska. Can. Field Nat. 118, 247–250 (2003).

  88. 88.

    Jacoby, M. E. et al. Trophic relations of brown and black bears in several western North American ecosystems. J. Wildl. Manage. 63, 921–929 (1999).

  89. 89.

    Belant, J. L., Griffith, B., Zhang, Y., Follmann, E. H. & Adams, L. G. Population-level resource selection by sympatric brown and American black bears in Alaska. Polar Biol. 33, 31–40 (2010).

  90. 90.

    Ainley, D. G., Ballard, G. & Dugger, K. M. Competition among penguins and cetaceans reveals trophic cascades in the western Ross Sea, Antarctica. Ecology 87, 2080–2093 (2006).

  91. 91.

    Cooper, S. M., Holekamp, K. E. & Smale, L. A seasonal feast: long-term analysis of feeding behaviour in the spotted hyena (Crocuta crocuta). Afr. J. Ecol. 37, 149–160 (1999).

  92. 92.

    Carpenter, S. R., Kitchell, J. F. & Hodgson, J. R. Cascading trophic interactions and lake productivity: fish predation and herbivory can regulate lake ecosystems. Bioscience 35, 634–639 (1985).

  93. 93.

    Piovia-Scott, J., Yang, L. H. & Wright, A. N. Temporal variation in trophic cascades. Annu. Rev. Ecol. Evol. Syst. 48, 281–300 (2017).

  94. 94.

    Chesson, P. L. & Huntly, N. The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am. Nat. 150, 519–553 (1997).

  95. 95.

    McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).

  96. 96.

    Kondoh, M. Foraging adaptation and the relationship between food-web complexity and stability. Science 299, 1388–1391 (2003).

  97. 97.

    McCann, K. S., Rasmussen, J. B. & Umbanhowar, J. The dynamics of spatially coupled food webs. Ecol. Lett. 8, 513–523 (2005).

  98. 98.

    McMeans, B. C., McCann, K. S., Humphries, M., Rooney, N. & Fisk, A. T. Food web structure in temporally-forced ecosystems. Trends Ecol. Evol. 30, 662–672 (2015).

  99. 99.

    McCauley, D. J. et al. Assessing the effects of large mobile predators on ecosystem connectivity. Ecol. Appl. 22, 1711–1717 (2012).

  100. 100.

    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).

  101. 101.

    Seidler, R. G., Long, R. A., Berger, J., Bergen, S. & Beckmann, J. P. Identifying impediments to long-distance mammal migrations. Conserv. Biol. 29, 99–109 (2015).

  102. 102.

    Berger, J. The last mile: how to sustain long-distance migration in mammals. Conserv. Biol. 18, 320–331 (2004).

  103. 103.

    Rittenhouse, T. A. G., Semlitsch, R. D. & Thompson, F. R. Survival costs associated with wood frog breeding migrations: effects of timber harvest and drought. Ecology 90, 1620–1630 (2009).

  104. 104.

    Wilcove, D. S. & Wikelski, M. Going, going, gone: is animal migration disappearing. PLoS Biol. 6, e188 (2008).

  105. 105.

    Quinn, T. P. & Adams, D. J. Environmental changes affecting the migratory timing of American shad and sockeye salmon. Ecology 77, 1151–1162 (1996).

  106. 106.

    Cotton, P. A. Avian migration phenology and global climate change. Proc. Natl Acad. Sci. USA 100, 12219–12222 (2003).

  107. 107.

    Inouye, D. W., Barr, B., Armitage, K. B. & Inouye, B. D. Climate change is affecting altitudinal migrants and hibernating species. Proc. Natl Acad. Sci. USA 97, 1630–1633 (2000).

  108. 108.

    Hauser, D. D. W. et al. Decadal shifts in autumn migration timing by Pacific Arctic beluga whales are related to delayed annual sea ice formation. Glob. Change Biol. 23, 2206–2217 (2017).

  109. 109.

    Altizer, S., Bartel, R. & Han, B. A. Animal migration and infectious disease risk. Science 331, 296–302 (2011).

  110. 110.

    Crozier, L. G. et al. Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon. Evol. Appl. 1, 252–270 (2008).

  111. 111.

    Sergeant, C. J., Armstrong, J. B. & Ward, E. J. Predator-prey migration phenologies remain synchronised in a warming catchment. Freshw. Biol. 60, 724–732 (2014).

  112. 112.

    Muhly, T. B., Semeniuk, C., Massolo, A., Hickman, L. & Musiani, M. Human activity helps prey win the predator-prey space race. PLoS ONE 6, e17050 (2011).

  113. 113.

    Berger, J. Fear, human shields and the redistribution of prey and predators in protected areas. Biol. Lett. 3, 620–623 (2007).

  114. 114.

    Ogada, M. O., Woodroffe, R., Oguge, N. O. & Frank, L. G. Limiting depredation by African carnivores: the role of livestock husbandry. Conserv. Biol. 17, 1521–1530 (2003).

  115. 115.

    Mishra, C. Livestock depredation by large carnivores in the Indian trans-Himalaya: conflict perceptions and conservation prospects. Environ. Conserv. 24, 338–343 (1997).

  116. 116.

    Muhly, T. B. & Musiani, M. Livestock depredation by wolves and the ranching economy in the northwestern U.S. Ecol. Econ. 68, 2439–2450 (2009).

  117. 117.

    Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl Acad. Sci. USA 105, 19052–19059 (2008).

  118. 118.

    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).

  119. 119.

    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

  120. 120.

    Eliason, E. J. et al. Differences in thermal tolerance among sockeye salmon populations. Science 332, 109–112 (2011).

  121. 121.

    Fancy, S. G. et al. Seasonal movements of caribou in Arctic Alaska as determined by satellite. Can. J. Zool. 67, 644–650 (1989).

Download references

Acknowledgements

N.B.F. was supported via a Vanier Scholarship from the Natural Sciences and Engineering Research Council of Canada, Canada’s Ocean Tracking Network (OTN), a postdoctoral internship through the MITACS Accelerate program, and the Salish Sea Marine Survival Project (SSMSP publication no. 24). This paper is a contribution from the ideasOTN program. The authors thank B. Harrower for helpful comments on previous drafts and M. Humphries for insightful comments regarding the manuscript's contents.

Author information

Affiliations

  1. Department of Biological Sciences, University of New Hampshire, Durham, NH, USA

    • Nathan B. Furey
  2. Department of Forest and Conservation Sciences, Pacific Salmon Ecology and Conservation Laboratory, University of British Columbia, Vancouver, British Columbia, Canada

    • Nathan B. Furey
    •  & Scott G. Hinch
  3. Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA

    • Jonathan B. Armstrong
  4. U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA

    • David A. Beauchamp

Authors

  1. Search for Nathan B. Furey in:

  2. Search for Jonathan B. Armstrong in:

  3. Search for David A. Beauchamp in:

  4. Search for Scott G. Hinch in:

Contributions

N.B.F., J.B.A., D.A.B. and S.G.H. contributed to the conception, writing and editing of this Review.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Nathan B. Furey.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41559-018-0711-3