Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A global test of ecoregions

An Author Correction to this article was published on 11 March 2019

This article has been updated

Abstract

A foundational paradigm in biological and Earth sciences is that our planet is divided into distinct ecoregions and biomes demarking unique assemblages of species. This notion has profoundly influenced scientific research and environmental policy. Given recent advances in technology and data availability, however, we are now poised to ask whether ecoregions meaningfully delimit biological communities. Using over 200 million observations of plants, animals and fungi we show compelling evidence that ecoregions delineate terrestrial biodiversity patterns. We achieve this by testing two competing hypotheses: the sharp-transition hypothesis, positing that ecoregion borders divide differentiated biotic communities; and the gradual-transition hypothesis, proposing instead that species turnover is continuous and largely independent of ecoregion borders. We find strong support for the sharp-transition hypothesis across all taxa, although adherence to ecoregion boundaries varies across taxa. Although plant and vertebrate species are tightly linked to sharp ecoregion boundaries, arthropods and fungi show weaker affiliations to this set of ecoregion borders. Our results highlight the essential value of ecological data for setting conservation priorities and reinforce the importance of protecting habitats across as many ecoregions as possible. Specifically, we conclude that ecoregion-based conservation planning can guide investments that simultaneously protect species-, community- and ecosystem-level biodiversity, key for securing Earth’s life support systems into the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Our approach to testing the sharp-transition and gradual-transition hypotheses.
Fig. 2: Species-accumulation curves from transects representing our two hypotheses.
Fig. 3: Summary of results from species-accumulation curve tests.
Fig. 4: Distance-similarity matrices from transects representing our two hypotheses.
Fig. 5: Summary of results from distance-similarity matrices tests.
Fig. 6: Relationship between geographical distance and community similarity in USFS FIA tree plots.

Similar content being viewed by others

Data availability

All data used in this study are publicly available from either www.gbif.org or www.fia.fs.fed.us

Change history

  • 11 March 2019

    The original paper was published without unique DOIs for GBIF occurrence downloads. These have now been inserted as references 70–76, and the error has been corrected in the PDF and HTML versions of the article.

References

  1. Ebach, M. C. Origins of Biogeography (Springer, Dordrecht, 2015).

  2. Gleason, H. A. On the relation between species and area. Ecology 3, 158–162 (1922).

    Article  Google Scholar 

  3. Clements, F. E. Plant Succession. An Analysis of the Development of Vegetation (Carnegie Institution of Washington, Washington DC, 1916).

  4. von Humboldt, A. & Bonpland, A. Essay on the Geography of Plants (University of Chicago Press, Chicago, 2013).

  5. Tjørve, E., Calf Tjørve, K. M., Šizlingová, E. & Šizling, A. L. Great theories of species diversity in space and why they were forgotten: the beginnings of a spatial ecology and the Nordic early 20th-century botanists. J. Biogeogr. 45, 530–540 (2018).

    Article  Google Scholar 

  6. Wallace, A. R. What are zoological regions? Nature 49, 610–613 (1894).

  7. Wallace, A. R. The Geographical Distribution of Animals: With a Study of the Relations of Living and Extinct Faunas as Elucidating the Past Changes of the Earth’s Surface (Harper and Brothers, New York, 1876).

  8. Holdridge, L. R. Determination of world plant formations from simple climatic data. Science 105, 367–368 (1947).

    Article  CAS  PubMed  Google Scholar 

  9. Whittaker, R. H. Classification of natural communities. Bot. Rev. 28, 1–239 (1962).

    Article  Google Scholar 

  10. Carpenter, J. R. The biome. Am. Midl. Nat. 21, 75–91 (1939).

    Article  Google Scholar 

  11. Hutchins, L. W. The bases for temperature zonation in geographical distribution. Ecol. Monogr. 17, 325–335 (1947).

    Article  Google Scholar 

  12. Bailey, R. G. Identifying ecoregion boundaries. Environ. Manage. 34, S14–S26 (2004).

    Article  PubMed  Google Scholar 

  13. Ellis, E. C. & Ramankutty, N. Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).

    Article  Google Scholar 

  14. Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Snyder, P. K., Delire, C. & Foley, J. A. Evaluating the influence of different vegetation biomes on the global climate. Clim. Dynam. 23, 279–302 (2004).

    Article  Google Scholar 

  16. Naidoo, R. et al. Global mapping of ecosystem services and conservation priorities. Proc. Natl Acad. Sci. USA 105, 9495–9500 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).

  19. Rueda, M., Rodríguez, M. Á. & Hawkins, B. A. Identifying global zoogeographical regions: lessons from Wallace. J. Biogeogr. 40, 2215–2225 (2013).

  20. Di Marco, M., Watson, J. E. M., Currie, D. J., Possingham, H. P. & Venter, O. The extent and predictability of the biodiversity–carbon correlation. Ecol. Lett. 21, 365–375 (2018).

  21. Kreft, H. & Jetz, W. Comment on ‘An update of Wallace’s zoogeographic regions of the world’. Science 341, 343 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).

    Article  Google Scholar 

  23. Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bailey, R. G. Ecoregions (Springer, New York, 2014).

  25. Lamoreux, J. F. et al. Global tests of biodiversity concordance and the importance of endemism. Nature 440, 212–214 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Ricketts, T. H. et al. Terrestrial Ecoregions of North America: A Conservation Assessment (Island Press, Washington DC, 1999).

  27. Groves, C., Valutis, L. & The Nature Conservancy (US) Guidelines for Representing Ecological Communities in Ecoregional Conservation Plans (The Nature Conservancy, Arlington, 1999).

  28. Ricketts, T. & Imhoff, M. Biodiversity, urban areas, and agriculture: locating priority ecoregions for conservation. conservation. Conserv. Ecol. 8, 1 (2003).

  29. Olson, D. M. & Dinerstein, E. The global 200: priority ecoregions for global conservation. Ann. Mo. Bot. Gard. 89, 199–224 (2002).

    Article  Google Scholar 

  30. Ricklefs, R. E. Disintegration of the ecological community. Am. Nat. 172, 741–750 (2008).

    Article  PubMed  Google Scholar 

  31. McDonald, R. et al. Species compositional similarity and ecoregions: do ecoregion boundaries represent zones of high species turnover? Biol. Conserv. 126, 24–40 (2005).

    Article  Google Scholar 

  32. Kerr, J. T. & Ostrovsky, M. From space to species: ecological applications for remote sensing. Trends Ecol. Evol. 18, 299–305 (2003).

    Article  Google Scholar 

  33. Higgins, S. I., Buitenwerf, R. & Moncrieff, G. R. Defining functional biomes and monitoring their change globally. Glob. Change Biol. 22, 3583–3593 (2016).

    Article  Google Scholar 

  34. Anderson, C. B. Biodiversity monitoring, Earth observations and the ecology of scale. Ecol. Lett. 21, 1572–1585 (2018).

    Article  PubMed  Google Scholar 

  35. Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).

    Article  PubMed  Google Scholar 

  36. Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, Princeton, 2001).

  37. Davis, M. B. in Forest Succession (eds West, D. C., Shugart, H. H. & Botkin, D. B.) 132–153 (Springer, New York, 1981).

  38. What is GBIF? (Global Biodiversity Information Facility, 2018); https://www.gbif.org/what-is-gbif

  39. Codling, E. A., Plank, M. J. & Benhamou, S. Random walk models in biology. J. R. Soc. Interface 5, 813–834 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Soininen, J., McDonald, R. & Hillebrand, H. The distance decay of similarity in ecological communities. Ecography 30, 3–12 (2007).

    Article  Google Scholar 

  41. Fortuna, M. A. et al. Nestedness versus modularity in ecological networks: two sides of the same coin? J. Anim. Ecol. 79, 811–817 (2010).

    PubMed  Google Scholar 

  42. Report of the Task Group on GBIF Data Fitness for Use in Distribution Modelling (Global Biodiversity Information Facility, 2017); https://www.gbif.org/document/82612/report-of-the-task-group-on-gbif-data-fitnessfor-use-in-distribution-modelling.

  43. Hoekstra, J. M., Boucher, T. M., Ricketts, T. H. & Roberts, C. Confronting a biome crisis: global disparities of habitat loss and protection. Ecol. Lett. 8, 23–29 (2005).

    Article  Google Scholar 

  44. Watson, J. E. M. & Venter, O. Ecology: a global plan for nature conservation. Nature 550, 48–49 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Wilson, E. O. Half-Earth: Our Plant’s Fight for Life (Liveright, New York, 2017).

    Google Scholar 

  46. Noss, R. F. et al. Bolder thinking for conservation. Conserv. Biol. 26, 1–4 (2012).

    Article  PubMed  Google Scholar 

  47. Peay, K. G., Bidartondo, M. I. & Arnold, A. E. Not every fungus is everywhere: scaling to the biogeography of fungal–plant interactions across roots, shoots and ecosystems. New Phytol. 185, 878–882 (2010).

    Article  PubMed  Google Scholar 

  48. Peay, K. G., Kennedy, P. G. & Talbot, J. M. Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 14, 434–447 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Hendershot, J. N., Read, Q. D., Henning, J. A., Sanders, N. J. & Classen, A. T. Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales. Ecology 98, 1757–1763 (2017).

    Article  PubMed  Google Scholar 

  50. Meyer, K. M. et al. Why do microbes exhibit weak biogeographic patterns? ISME J. 12, 1404–1413 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Troia, M. J. & McManamay, R. A. Filling in the GAPS: evaluating completeness and coverage of open-access biodiversity databases in the United States. Ecol. Evol. 6, 4654–4669 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R. & Legendre, F. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7, 9132 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sato, H., Tsujino, R., Kurita, K., Yokoyama, K. & Agata, K. Modelling the global distribution of fungal species: new insights into microbial cosmopolitanism. Mol. Ecol. 21, 5599–5612 (2012).

    Article  PubMed  Google Scholar 

  54. Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Hortal, J., Roura-Pascual, N., Sanders, N. J. & Rahbek, C. Understanding (insect) species distributions across spatial scales. Ecography 33, 51–53 (2010).

    Article  Google Scholar 

  56. Lobo, J. M. The use of occurrence data to predict the effects of climate change on insects. Curr. Opin. Insect Sci. 17, 62–68 (2016).

    Article  PubMed  Google Scholar 

  57. Lightfoot, D. C., Brantley, S. L. & Allen, C. D. Geographic patterns of ground-dwelling arthropods across an ecoegional transition in the North American southwest. West. N. Am. Naturalist 68, 83–102 (2008).

    Article  Google Scholar 

  58. González-Reyes, A. X., Corronca, J. A. & Rodriguez-Artigas, S. M. Changes of arthropod diversity across an altitudinal ecoregional zonation in northwestern Argentina. PeerJ 5, e4117 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. González-Reyes, A. X., Corronca, J. A. & Arroyo, N. C. Differences in alpha and beta diversities of epigeous arthropod assemblages in two ecoregions of northwestern Argentina. Zool. Stud. 51, 1367–1379 (2012).

    Google Scholar 

  60. Anderson, D. J. & Vondracek, B. Insects as indicators of land use in three ecoregions in the Prairie Pothole Region. Wetlands 19, 648–664 (1999).

    Article  Google Scholar 

  61. Melo, A. S., Rangel, T. F. L. V. B. & Diniz‐Filho, J. A. F. Environmental drivers of beta-diversity patterns in New-World birds and mammals. Ecography 32, 226–236 (2009).

    Article  Google Scholar 

  62. Van Rensburg, B. J., Koleff, P., Gaston, K. J. & Chown, S. L. Spatial congruence of ecological transition at the regional scale in South Africa. J. Biogeogr. 31, 843–854 (2004).

    Article  Google Scholar 

  63. Beaumont, L. J. et al. Impacts of climate change on the world’s most exceptional ecoregions. Proc. Natl Acad. Sci. USA 108, 2306–2311 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Karp, D. S. et al. Intensive agriculture erodes β-diversity at large scales. Ecol. Lett. 15, 963–970 (2012).

    Article  PubMed  Google Scholar 

  65. Ecoregions (US Environmental Protection Agency, 2015); https://www.epa.gov/eco-research/ecoregions

  66. Digital Map of European Ecological Regions (European Environment Agency, 2003); https://www.eea.europa.eu/data-and-maps/data/digital-map-of-european-ecological-regions

  67. The Nature Conservancy Ecoregional Priorities (LandScope America, 2018); http://www.landscope.org/focus/understand/tnc_portfolio/

  68. Ecoregions (World Wildlife Fund, 2018); https://www.worldwildlife.org/biomes

  69. Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol. Inform. 19, 10–15 (2014).

    Article  Google Scholar 

  70. Plants: GBIF.org (GBIF, 2018); https://doi.org/10.15468/dl.uhenlf

  71. Arthropods: GBIF.org (GBIF, 2018); https://doi.org/10.15468/dl.uhumps

  72. Reptiles: GBIF.org (GBIF, 2018); https://doi.org/10.15468/dl.pn1aw9

  73. Amphibians: GBIF.org (GBIF, 2018); https://doi.org/10.15468/dl.as6uug

  74. Mammals: GBIF.org (GBIF, 2018); https://doi.org/10.15468/dl.diqarx

  75. Birds: GBIF.org (GBIF, 2018); https://doi.org/10.15468/dl.61rqcy

  76. Fungi: GBIF.org (GBIF, 2018); https://doi.org/10.15468/dl.akftay

  77. EPSG:3410 NSIDC EASE-Grid Global (National Snow and Ice Data Center, 2018); https://epsg.io/3410

  78. Yesson, C. et al. How global is the Global Biodiversity Information Facility? PLoS ONE 2, e1124 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  79. GBIF replacing coordinateAccuracy w/ coordinateUncertaintyInMeters & coordinatePrecision, Issue #206 (GitHub, 2018); https://github.com/ropensci/rgbif/issues/206

  80. Maldonado, C. et al. Estimating species diversity and distribution in the era of Big Data: to what extent can we trust public databases. Glob. Ecol. Biogeogr 24, 973–984 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Science Foundation’s Graduate Research Fellowship Program Division of Graduate Education No. 1656518, the Stanford Department of Biology and the Ward Wilson Woods Jr Environmental Studies Fund (to J.R.S.). Some of the computing for this project was performed on the Sherlock cluster. We would like to thank Stanford University and the Stanford Research Computing Center for providing computational resources and support that contributed to these research results. We thank K. Peay, T. Fukami, B. Brosi and B. Bryant for discussions that increased the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.R.S., A.D.L. and P.J.K developed the original concept. J.R.S., A.D.L., P.J.K., C.B.A., J.N.H., M.K.D., G.A.D., T.N.G., M.E.H., B.M.L.M. and P.A.S.J. developed the model. J.R.S., C.B.A., D.R. and T.W.C. carried out the spatial analysis. J.R.S. and T.W.C. gathered and analysed supplementary data from the USFS FIA. J.R.S. wrote and edited the manuscript with input from all authors.

Corresponding author

Correspondence to Jeffrey R. Smith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Tables 1–3 and Supplementary Figures 1–14

Reporting Summary

Supplementary Tables 2 and 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, J.R., Letten, A.D., Ke, PJ. et al. A global test of ecoregions. Nat Ecol Evol 2, 1889–1896 (2018). https://doi.org/10.1038/s41559-018-0709-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0709-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing