Abstract
Wind farms are a cleaner alternative to fossil fuels for mitigating the effects of climate change, but they also have complex ecological consequences. In the biodiversity hotspot of the Western Ghats in India, we find that wind farms reduce the abundance and activity of predatory birds (for example, Buteo, Butastur and Elanus species), which consequently increases the density of lizards, Sarada superba. The cascading effects of wind turbines on lizards include changes in behaviour, physiology and morphology that reflect a combination of predator release and density-dependent competition. By adding an effective trophic level to the top of food webs, we find that wind farms have emerging impacts that are greatly underestimated. There is thus a strong need for an ecosystem-wide view when aligning green-energy goals with environment protection.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Impact of wind energy development on birds and bats: the case of Adama wind farm, Central Ethiopia
The Journal of Basic and Applied Zoology Open Access 29 June 2020
-
Mesocarnivores affect hispid cotton rat (Sigmodon hispidus) body mass
Scientific Reports Open Access 10 October 2019
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


Data availability
The data that support the findings of this study are available from the corresponding author upon request.
References
Global Wind Report (Global Wind Energy Council, 2017).
Adoption of the Paris Agreement (United Nations Framework Convention on Climate Change, 2015).
Denholm, P., Hand, M., Jackson, M. & Ong, S. Land Use Requirements of Modern Wind Power Plants in the United States Technical Report (National Renewable Energy Laboratory, Golden, 2009).
Schuster, E., Bulling, L. & Köppel, J. Environ. Manage. 56, 300–331 (2015).
Barrios, L. & Rodríguez, A. J. Appl. Ecol. 41, 72–81 (2004).
Korner-Nievergelt, F., Brinkmann, R., Niermann, I. & Behr, O. PLoS ONE 8, e67997 (2013).
Desholm, M. & Kahlert, J. Biol. Lett. 1, 296–298 (2005).
Cryan, P. M. et al. Proc. Natl Acad. Sci. USA 111, 15126–15131 (2014).
Łopucki, R. & Mróz, I. Environ. Monit. Assess. 188, 122 (2016).
Stewart, G. B., Pullin, A. S. & Coles, C. F. Environ. Conserv. 34, 1–11 (2007).
Estes, J. A. et al. Science 333, 301–306 (2011).
Paine, R. T. Am. Nat. 103, 91–93 (1969).
Sih, A., Crowley, P., McPeek, M., Petranka, J. & Strohmeier, K. Annu. Rev. Ecol. Syst. 16, 269–311 (1985).
Lima, S. L. Bioscience 48, 25–34 (1998).
Clinchy, M., Sheriff, M. J. & Zanette, L. Y. Funct. Ecol. 27, 56–65 (2013).
Peckarsky, B. L. et al. Ecology 89, 2416–2425 (2008).
Werner, E. E. & Peacor, S. D. Ecology 84, 1083–1100 (2003).
Sheriff, M. J. & Thaler, J. S. Oecologia 176, 607–611 (2014).
Watve, A. J. Threat. Taxa 5, 3935–3962 (2013).
Karandikar, M., Ghate, K. & Kulkarni, K. J. Ecol. Soc. 28, 45–62 (2015).
Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T. & Ferrier, S. Proc. Natl Acad. Sci. USA 110, 9374–9379 (2013).
Miller, T. A. et al. Conserv. Biol. 28, 745–755 (2014).
Drewitt, A. L. & Langston, R. Ibis 148, 29–42 (2006).
De Lucas, M., Janss, G. F. E., Whitfield, D. P. & Ferrer, M. J. Appl. Ecol. 45, 1695–1703 (2008).
Leddy, K. L., Higgins, K. F. & Naugle, D. E. Wilson Bull. 111, 100–104 (1999).
Pande, S. et al. J. Threat. Taxa 5, 3504–3515 (2013).
Rich, E. L. & Romero, L. M. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R1628–R1636 (2005).
Agnew, R. C. N., Smith, V. J. & Fowkes, R. C. J. Wildl. Dis. 52, 459–467 (2016).
Thaker, M., Vanak, A. T., Lima, S. L. & Hews, D. K. Am. Nat. 175, 50–60 (2010).
Thaker, M., Lima, S. L. & Hews, D. K. Horm. Behav. 56, 51–57 (2009).
Ripple, W. J., Rooney, T. P. & Beschta, R. L. in Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature (eds Terborgh, J. & Estes, J.) 141–161 (Island Press, Washington DC, 2010).
Fraser, D. F., Gilliam, J. F., Akkara, J. T., Albanese, B. W. & Snider, S. B. Ecology 85, 312–319 (2004).
Jenkins, T. M., Diehl, S., Kratz, K. W. & Cooper, S. D. Ecology 80, 941–956 (1999).
Zambre, A. M. & Thaker, M. Anim. Behav. 127, 197–203 (2017).
Hill, G. E. Nature 350, 337–339 (1991).
Ruell, E. W. et al. Proc. R. Soc. B 280, 20122019 (2013).
Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. Nature 527, 367–370 (2015).
Lutmerding, J. A., Rogosky, M., Peterjohn, B., McNicoll, J. & Bystrak, D. J. Rapt. Res. 46, 17–26 (2012).
Darimont, C. T., Fox, C. H., Bryan, H. M. & Reimchen, T. E. Science 349, 858–860 (2015).
Bosch, J., Staffell, I. & Hawkes, A. D. Energy 131, 207–217 (2017).
Decision Adopted by the Conference of the Parties to the Convention on Biological Diversity at its Tenth Meeting. X/2. The Strategic Plan for Biodiversity 2011–2020 and the Aichi Biodiversity Targets (SCBD, 2010); https://www.cbd.int/doc/decisions/cop-10/cop-10-dec-02-en.pdf
R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
Grimmett, R., Inskipp, C. & Inskipp, T. Birds of the Indian Subcontinent: India, Pakistan, Sri Lanka, Nepal, Bhutan, Bangladesh and the Maldives (Bloomsbury, London, 2013).
Rasmussen, P. C. & Anderton, J. C. Birds of South Asia: The Ripley Guide (Smithsonian National Museum of Natural History and Lynx Edicions, Washington DC, 2005).
Dodd, C. K. Reptile Ecology and Conservation (Oxford Univ. Press, Oxford, 2016).
Nopper, J., Lauströer, B., Rödel, M. O. & Ganzhorn, J. U. J. Appl. Ecol. 54, 480–488 (2017).
De Infante Anton, J. R., Rotger, A., Igual, J. M. & Tavecchia, G. Wildl. Res. 40, 552–560 (2014).
Wingfield, J. C., Vleck, C. M. & Moore, M. C. J. Exp. Zool. 264, 419–428 (1992).
Wada, H., Hahn, T. P. & Breuner, C. W. Gen. Comp. Endocrinol. 150, 405–413 (2007).
Blumstein, D. T. & Daniel, J. C. Proc. R. Soc. B 272, 1663–1668 (2005).
Samia, D. S. M., Blumstein, D. T., Stankowich, T. & Cooper, W. E. Biol. Rev. 91, 349–366 (2016).
Ydenberg, R. C. & Dill, L. M. Adv. Study Behav. 16, 229–249 (1986).
Peig, J. & Green, A. J. Oikos 118, 1883–1891 (2009).
Stevens, M., Parraga, C. A. & Cuthill, I. C. Biol. J. Linn. Soc. 90, 211–237 (2007).
Endler, J. A. Biol. J. Linn. Soc. 41, 315–352 (1990).
Grill, C. P. & Rush, V. N. Biol. J. Linn. Soc. 69, 121–138 (2000).
Bergman, T. J. & Beehner, J. C. Biol. J. Linn. Soc. 94, 231–240 (2008).
Kemp, D. J. et al. Am. Nat. 185, 705–724 (2015).
Acknowledgements
We thank the Maharashtra Forest Department for permits and Suzlon for allowing us to work on their property. We appreciate the logistical support provided by the Bhosale family in Satara, D. Gholap, and the Primary Health Centre in Thoseghar. We also thank N. Dandekar, G. Gowande, D. Joshi and R. Kashid for help in the field, A.K. Nageshkumar for remote sensing analysis, J. Endler for MatLab script, A. Ghatage for help with colour analyses and V. Giri for continued support. The Environmental Science Department of Fergusson College, Pune, provided partial support to H.B. during some of the bird surveys. Funding was provided by the MOEF-CC, DST-FIST and DBT-IISc partnership programme. Finally, we thank S.L. Lima, A.T. Vanak, K. Shanker and A. Batabyal for valuable comments on an earlier version of this manuscript.
Author information
Authors and Affiliations
Contributions
M.T. and A.Z. conceived and designed the study, analysed the data and wrote the paper. H.B. conceived and designed the bird data collection. A.Z. and H.B. collected the data. M.T. contributed materials.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figures 1–4
Rights and permissions
About this article
Cite this article
Thaker, M., Zambre, A. & Bhosale, H. Wind farms have cascading impacts on ecosystems across trophic levels. Nat Ecol Evol 2, 1854–1858 (2018). https://doi.org/10.1038/s41559-018-0707-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41559-018-0707-z
This article is cited by
-
Landscape features associated to wind farms increase mammalian predator abundance and ground-nest predation
Biodiversity and Conservation (2021)
-
Impact of wind energy development on birds and bats: the case of Adama wind farm, Central Ethiopia
The Journal of Basic and Applied Zoology (2020)
-
Quantifying the differences in avian attack rates on reptiles between an infrastructure and a control site
European Journal of Wildlife Research (2020)
-
Mesocarnivores affect hispid cotton rat (Sigmodon hispidus) body mass
Scientific Reports (2019)