Abstract
Recognizing when and how rapid evolution drives ecological change is fundamental for our understanding of almost all ecological and evolutionary processes such as community assembly, genetic diversification and the stability of communities and ecosystems. Generally, rapid evolutionary change is driven through selection on genetic variation and is affected by evolutionary constraints, such as tradeoffs and pleiotropic effects, all contributing to the overall rate of evolutionary change. Each of these processes can be influenced by the presence of multiple environmental stressors reducing a population’s reproductive output. Potential consequences of multistressor selection for the occurrence and strength of the link from rapid evolution to ecological change are unclear. However, understanding these is necessary for predicting when rapid evolution might drive ecological change. Here we investigate how the presence of two stressors affects this link using experimental evolution with the bacterium Pseudomonas fluorescens and its predator Tetrahymena thermophila. We show that the combination of predation and sublethal antibiotic concentrations delays the evolution of anti-predator defence and antibiotic resistance compared with the presence of only one of the two stressors. Rapid defence evolution drives stabilization of the predator–prey dynamics but this link between evolution and ecology is weaker in the two-stressor environment, where defence evolution is slower, leading to less stable population dynamics. Tracking the molecular evolution of whole populations over time shows further that mutations in different genes are favoured under multistressor selection. Overall, we show that selection by multiple stressors can significantly alter eco-evolutionary dynamics and their predictability.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
Data reported in the paper will be archived in a community archive. Raw sequence reads from genomic analyses have been deposited in the NCBI Sequence Read Archive under the BioProject accession number PRJNA476204. Count and trait data have been deposited at PANGAEA: https://doi.pangaea.de/10.1594/PANGAEA.895614.
References
Gullberg, E. et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Path. 7, e1002158 (2011).
Andersson, D. I. & Hughes, D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8, 260–271 (2010).
Frickel, J., Theodosiu, L. & Becks, L. Rapid evolution of hosts begets species diversity at the cost of intraspecific diversity. Proc. Natl Acad. Sci. USA 114, 11193–11198 (2017).
Cairns, J., Becks, L., Jalasvuori, M. & Hiltunen, T. Sublethal streptomycin concentrations and lytic bacteriophage interactively promote resistance evolution. Phil. Trans. R. Soc. B 9, 20160040 (2017).
Frickel, J., Sieber, M. & Becks, L. Eco-evolutionary dynamics in a coevolving host–virus system. Ecol. Lett. 19, 450–459 (2016).
Yoshida, T. et al. Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424, 303–306 (2003).
Koch, H., Frickel, J., Valiadi, M. & Becks, L. Why rapid, adaptive evolution matters for community dynamics. Front. Ecol. Evol. 2, 17 (2014).
Rudman, S. M. et al. What genomic data can reveal about eco-evolutionary dynamics. Nat. Ecol. Evol. 2, 9–15 (2018).
Madigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H. & Stahl, D. A. Brock Biology of Microorganisms 14th edn (Pearson, Harlow, 2014).
Paerl, H. W. & Huisman, J. Climate – blooms like it hot. Science 320, 57–58 (2008).
Bordenstein, S. R. & Theis, K. R. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol. 13, e1002226 (2015).
Hiltunen, T., Kaitala, V., Laakso, J. & Becks, L. Evolutionary contribution to coexistence of competitors in microbial food webs. Proc. R. Soc. B 284, 20170415 (2017).
Lawrence, D. et al. Species interactions alter evolutionary responses to a novel environment. PLoS Biol. 10, e1001330 (2012).
Hoffmann, A. A. & Hercus, M. J. Environmental stress as an evolutionary force. Bioscience 50, 217–226 (2000).
Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).
Meyer, J. R. & Kassen, R. The effects of competition and predation on diversification in a model adaptive radiation. Nature 446, 432–435 (2007).
Hiltunen, T. & Becks, L. Consumer co-evolution as an important component of the eco-evolutionary feedback. Nat. Commun. 5, 5226 (2014).
Murdoch, W. W., Nisbet, R. M., McCauley, E., deRoos, A. M. & Gurney, W. S. C. Plankton abundance and dynamics across nutrient levels: tests of hypotheses. Ecology 79, 1339–1356 (1998).
McCauley, E., Nisbet, R. M., Murdoch, W. W., de Roos, A. M. & Gurney, W. S. C. Large-amplitude cycles of Daphnia and its algal prey in enriched environments. Nature 402, 653–656 (1999).
Abrams, P. A. & Matsuda, H. Prey adaptation as a cause of predator–prey cycles. Evolution 51, 1742–1750 (1997).
Fussmann, G. F., Ellner, S. P., Shertzer, K. W. & Hairston, N. G. Jr Crossing the Hopf bifurcation in a live predator–prey system. Science 290, 1358–1360 (2000).
Jones, L. E. & Ellner, S. P. Effects of rapid prey evolution on predator–prey cycles. J. Math. Biol. 55, 541–573 (2007).
Becks, L., Ellner, S. P., Jones, L. E. & Hairston, N. G. Jr Reduction of adaptive genetic diversity radically alters eco-evolutionary community dynamics. Ecol. Lett. 13, 989–997 (2010).
Friman, V.-P., Guzman, L. M., Reuman, D. C. & Bell, T. Bacterial adaptation to sublethal antibiotic gradients can change the ecological properties of multitrophic microbial communities. Proc. R. Soc. Lond. B. 282, 20142920 (2015).
Lang, G. I. et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500, 571–574 (2013).
Ostman, B., Hintze, A. & Adami, C. Impact of epistasis and pleiotropy on evolutionary adaptation. Proc. R. Soc. B 279, 247–256 (2012).
Hansen, T. F. Why epistasis is important for selection and adaptation. Evolution 67, 3501–3511 (2013).
Rosenthal, J. P. & Dirzo, R. Effects of life history, domestication and agronomic selection on plant defence against insects: Evidence from maizes and wild relatives. Evol. Ecol. 11, 337–355 (1997).
Barton, N. & Partridge, L. Limits to natural selection. Bioessays 22, 1075–1084 (2000).
Gerrish, P. J. & Lenski, R. E. The fate of competing beneficial mutations in an asexual population. Genetica 102-3, 127–144 (1998).
Ferriere, R. & Legendre, S. Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory. Phil. Trans. R. Soc. B 368, 20120081 (2013).
Fogle, C. A., Nagle, J. L. & Desai, M. M. Clonal interference, multiple mutations and adaptation in large asexual populations. Genetics 180, 2163–2173 (2008).
Park, S. C. & Krug, J. Clonal interference in large populations. Proc. Natl Acad. Sci. USA 104, 18135–18140 (2007).
Osmond, M. M., Otto, S. P. & Klausmeier, C. A. When predators help prey adapt and persist in a changing environment. Am. Nat. 190, 83–98 (2017).
Cortez, M. H. How the magnitude of prey genetic variation alters predator–prey eco-evolutionary dynamics. Am. Nat. 188, 329–341 (2016).
Hairston, N. G. et al. Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8, 1114–1127 (2005).
Bell, G. Evolutionary rescue and the limits of adaptation. Phil. Trans. R. Soc. B 368, 20120080 (2013).
Orr, A. H. & Unckless, R. L. The population genetics of evolutionary rescue. PLoS Genet. 10, e1004551 (2014).
Buskirk, S. W., Peace, R. E. & Lang, G. I. Hitchhiking and epistasis give rise to cohort dynamics in adapting populations. Proc. Natl Acad. Sci. USA 114, 8330–8335 (2017).
Rainey, P. B. & Travisano, M. Adaptive radiation in a heterogeneous environment. Nature 394, 69–72 (1998).
Workentine, M. L., Wang, S. Y., Ceri, H. & Turner, R. J. Spatial distributions of Pseudomonas fluorescens colony variants in mixed-culture biofilms. BMC Microbiol. 13, 175 (2013).
Bantinaki, E. et al. Adaptive divergence in experimental populations of Pseudomonas fluorescens. III. Mutational origins of wrinkly spreader diversity. Genetics 176, 441–453 (2007).
Mavrodi, O. V., Mavrodi, D. V., Weller, D. M. & Thomashow, L. S. Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96. Appl. Environ. Microbiol. 72, 7111–7122 (2006).
Naeem, S., Duffy, J. E. & Zavaleta, E. The functions of biological diversity in an age of extinction. Science 336, 1401–1406 (2012).
Ellner, S. P. & Becks, L. Rapid prey evolution and the dynamics of two-predator food webs. Theor. Ecol. 4, 133–152 (2011).
Rainey, P. B. & Bailey, M. J. Physical and genetic map of the Pseudomonas fluorescens SBW25 chromosome. Mol. Microbiol. 19, 521–533 (1996).
Kassen, R., Buckling, A., Bell, G. & Rainey, P. B. Diversity peaks at intermediate productivity in a laboratory microcosm. Nature 406, 508–512 (2000).
Duetz, W. A. et al. Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates. Appl. Environ. Microbiol. 66, 2641–2646 (2000).
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Halekoh, U., Hojsgaard, S. & Yan, J. The R package geepack for generalized estimating equations. J. Stat. Softw. 15, 1–11 (2006).
Borchers, H. W. pracma: Practical Numerical Math Functions R Package Version 2.1.5 (2018); https://CRAN.R-project.org/package=pracma
Silby, M. W. et al. Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol. 10, R51 (2009).
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3. Fly 6, 80–92 (2012).
McDonald, M. J., Rice, D. P. & Desai, M. M. Sex speeds adaptation by altering the dynamics of molecular evolution. Nature 531, 233–239 (2016).
Abyzov, A., Urban, A. E., Snyder, M. & Gerstein, M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 21, 974–984 (2011).
Acknowledgements
We are grateful to T. Niska, S. Suomalainen, T. Virolainen and J. Haafke for helping with data collection. This work was supported by an Emmy Noether Grant and Heisenberg Stipend from the German Research Foundation (DFG) to L.B. (grant nos. BE 4135/3-1 and 4135/9), and received support from the Academy of Finland to T.H. (project no. 106993), to J.L. (project no. 1255572) and to V.K. (project no. 1267541) and the Finnish Cultural Foundation to J.C. (grant no. 160149).
Author information
Authors and Affiliations
Contributions
T.H., M.J. and L.B. conceived and designed the study. J.C., J.F., E.K. and L.B. analysed the sequence data. S.K. performed the sequencing. T.H. and J.C. collected the data. L.B. and T.H. analysed the data. J.F., T.H. and L.B. wrote the manuscript. All authors contributed to the final version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figures 1–10 and Supplementary Tables 1–6
Rights and permissions
About this article
Cite this article
Hiltunen, T., Cairns, J., Frickel, J. et al. Dual-stressor selection alters eco-evolutionary dynamics in experimental communities. Nat Ecol Evol 2, 1974–1981 (2018). https://doi.org/10.1038/s41559-018-0701-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41559-018-0701-5