Article | Published:

Global trait–environment relationships of plant communities

Nature Ecology & Evolutionvolume 2pages19061917 (2018) | Download Citation

Abstract

Plant functional traits directly affect ecosystem functions. At the species level, trait combinations depend on trade-offs representing different ecological strategies, but at the community level trait combinations are expected to be decoupled from these trade-offs because different strategies can facilitate co-existence within communities. A key question is to what extent community-level trait composition is globally filtered and how well it is related to global versus local environmental drivers. Here, we perform a global, plot-level analysis of trait–environment relationships, using a database with more than 1.1 million vegetation plots and 26,632 plant species with trait information. Although we found a strong filtering of 17 functional traits, similar climate and soil conditions support communities differing greatly in mean trait values. The two main community trait axes that capture half of the global trait variation (plant stature and resource acquisitiveness) reflect the trade-offs at the species level but are weakly associated with climate and soil conditions at the global scale. Similarly, within-plot trait variation does not vary systematically with macro-environment. Our results indicate that, at fine spatial grain, macro-environmental drivers are much less important for functional trait composition than has been assumed from floristic analyses restricted to co-occurrence in large grid cells. Instead, trait combinations seem to be predominantly filtered by local-scale factors such as disturbance, fine-scale soil conditions, niche partitioning and biotic interactions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data contained in sPlot (the vegetation-plot data complemented by trait and environmental information) are available on request, by contacting any of the sPlot consortium members, for submission of a paper proposal. The proposals should follow the Governance and Data Property Rules of the sPlot Working Group, which are available on the sPlot website (www.idiv.de/sPlot).

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Warming, E. Lehrbuch der ökologischen Pflanzengeographie – Eine Einführung in die Kenntnis der Pflanzenvereine (Borntraeger, Berlin, 1896).

  2. 2.

    Garnier, E. et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85, 2630–2637 (2004).

  3. 3.

    Ordoñez, J. C. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 18, 137–149 (2009).

  4. 4.

    Garnier, E., Navas, M.-L. & Grigulis, K. Plant Functional Diversity – Organism Traits, Community Structure, and Ecosystem Properties (Oxford Univ. Press, Oxford, 2016).

  5. 5.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

  6. 6.

    Moles, A. T. et al. Global patterns in plant height. J. Ecol. 97, 923–932 (2009).

  7. 7.

    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

  8. 8.

    Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).

  9. 9.

    Adler, P. B. et al. Functional traits explain variation in plant life history strategies. Proc. Natl Acad. Sci. USA 111, 740–745 (2014).

  10. 10.

    Marks, C. O. & Lechowicz, M. J. Alternative designs and the evolution of functional diversity. Am. Nat. 167, 55–67 (2006).

  11. 11.

    Grime, J. P. Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. J. Veg. Sci. 17, 255–260 (2006).

  12. 12.

    Muscarella, R. & Uriarte, M. Do community-weighted mean functional traits reflect optimal strategies?. Proc. R. Soc. B 283, 20152434 (2016).

  13. 13.

    Swenson, N. G. & Weiser, M. D. Plant geography upon the basis of functional traits: an example from eastern North American trees. Ecology 91, 2234–2241 (2010).

  14. 14.

    Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708 (2009).

  15. 15.

    Swenson, N. G. et al. Phylogeny and the prediction of tree functional diversity across novel continental settings. Glob. Ecol. Biogeogr. 26, 553–562 (2017).

  16. 16.

    Swenson, N. G. et al. The biogeography and filtering of woody plant functional diversity in North and South America. Glob. Ecol. Biogeogr. 21, 798–808 (2012).

  17. 17.

    Wright, I. J. et al. Global climatic drivers of leaf size. Science 357, 917–921 (2017).

  18. 18.

    Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010).

  19. 19.

    Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).

  20. 20.

    Barboni, D. et al. Relationships between plant traits and climate in the Mediterranean region: a pollen data analysis. J. Veg. Sci 15, 635–646 (2004).

  21. 21.

    Borgy, B. et al. Plant community structure and nitrogen inputs modulate the climate signal on leaf traits. Glob. Ecol. Biogeogr. 26, 1138–1152 (2017).

  22. 22.

    van Bodegom, P. M., Douma, J. C. & Verheijen, L. M. A fully traits-based approach to modeling global vegetation distribution. Proc. Natl Acad. Sci. USA 111, 13733–13738 (2014).

  23. 23.

    Moles, A. T. et al. Which is a better predictor of plant traits: temperature or precipitation? J. Veg. Sci. 25, 1167–1180 (2014).

  24. 24.

    Ordoñez, J. C. et al. Plant strategies in relation to resource supply in mesic to wet environments: does theory mirror nature?. Am. Nat. 175, 225–239 (2010).

  25. 25.

    Simpson, A. J., Richardson, S. J. & Laughlin, D. C. Soil–climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests. Glob. Ecol. Biogeogr. 25, 964–978 (2016).

  26. 26.

    Lienin, P. & Kleyer, M. Plant leaf economics and reproductive investment are responsive to gradients of land use intensity. Agric. Ecosyst. Environ. 145, 67–76 (2011).

  27. 27.

    Maire, V. et al. Habitat filtering and niche differentiation jointly explain species relative abundance within grassland communities along fertility and disturbance gradients. New Phytol. 196, 497–509 (2012).

  28. 28.

    Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 980–992 (2009).

  29. 29.

    Güsewell, S. N:P ratios in terrestrial plants: variation and functional significance. New Phytol. 164, 243–266 (2004).

  30. 30.

    Reich, P. B. & Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl Acad. Sci. USA 101, 11001–11006 (2004).

  31. 31.

    Scheiter, S., Langan, L. & Higgins, S. I. Next generation dynamic global vegetation models: learning from community ecology. New Phytol. 198, 957–969 (2013).

  32. 32.

    Boyle, B. et al. The Taxonomic Name Resolution Service: an online tool for automated standardization of plant names. BMC Bioinform. 14, 16 (2013).

  33. 33.

    Bremer, B. et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161, 105–121 (2009).

  34. 34.

    Schrodt, F. et al. BHPMF – a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 24, 1510–1521 (2015).

  35. 35.

    Kattge, J. et al. TRY ‒ a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).

  36. 36.

    Shan, H. et al. Gap filling in the plant kingdom – trait prediction using hierarchical probabilistic matrix factorization. In Proc. 29th Int. Conf. Machine Learning (ICML 2012) 1303−1310 (Omnipress, Madison, 2012).

  37. 37.

    Fazayeli, F. et al. Uncertainty quantified matrix completion using Bayesian Hierarchical Matrix factorization. In Proc. 13th Int. Conf. Machine Learning and Applications (ICMLA 2014) 312−317 (Institute of Electrical and Electronics Engineers, Danvers, 2014).

  38. 38.

    Borgy, B. et al. Sensitivity of community-level trait–environment relationships to data representativeness: a test for functional biogeography. Glob. Ecol. Biogeogr. 26, 729–739 (2017).

  39. 39.

    Herz, K. et al. Drivers of intraspecific trait variation of grass and forb species in German meadows and pastures. J. Veg. Sci. 28, 705–716 (2017).

  40. 40.

    Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).

  41. 41.

    Karger, D. N. et al. Climatologies at High Resolution for the Earth Land Surface Areas (Version 1.1) (World Data Center for Climate (WDCC) at DKRZ, 2016); http://chelsa-climate.org/downloads/

  42. 42.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc 137, 553–597 (2011).

  43. 43.

    Synes, N. W. & Osborne, P. E. Choice of predictor variables as a source of uncertainty in continental-scale species distribution modelling under climate change. Glob. Ecol. Biogeogr. 20, 904–914 (2011).

  44. 44.

    Enquist, B. et al. Scaling from traits to ecosystems: developing a general trait driver theory via integrating trait-based and metabolic scaling theories. Adv. Ecol. Res. 52, 249–318 (2015).

  45. 45.

    Buzzard, V. et al. Re-growing a tropical dry forest: functional plant trait composition and community assembly during succession. Funct. Ecol. 30, 1006–1013 (2016).

  46. 46.

    Rao, C. R. Diversity and dissimilarity coefficients: a unified approach. Theor. Popul. Biol. 21, 24–43 (1982).

  47. 47.

    Champely, S. & Chessel, D. Measuring biological diversity using Euclidean metrics. Environ. Ecol. Stat 9, 167–177 (2002).

  48. 48.

    Dowle, M. et al. data.table: Extension of data.frame. R Package Version 1.9.6 (2015); https://CRAN.R-project.org/package=data.table

  49. 49.

    Hawkins, B. A. et al. Structural bias in aggregated species-level variables driven by repeated species co-occurrences: a pervasive problem in community and assemblage data. J. Biogeogr. 44, 1199–1211 (2017).

  50. 50.

    Knijnenburg, T. A. et al. Fewer permutations, more accurate P-values. Bioinformatics 25, i161–i168 (2009).

  51. 51.

    Friendly, M. Corrgrams: exploratory displays for correlation matrices. Am. Stat. 56, 316–324 (2002).

  52. 52.

    Oksanen, J. et al. vegan: Community Ecology Package. R Package Version 2.3-3 (2016); https://CRAN.R-project.org/package=vegan

  53. 53.

    Lengyel, A., Chytrý, M. & Tichý, L. Heterogeneity-constrained random resampling of phytosociological databases. J. Veg. Sci 22, 175–183 (2011).

  54. 54.

    Baselga, A. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob. Ecol. Biogeogr. 21, 1223–1232 (2012).

  55. 55.

    Garnier, E. et al. Towards a thesaurus of plant characteristics: an ecological contribution. J. Ecol. 105, 298–309 (2017).

Download references

Acknowledgements

The sPlot was initiated by sDiv, the Synthesis Centre of the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118) and is now a platform of iDiv. H.B., J.De., O.Pu, U.J., B.J.-A., J.K., D.C., F.M.S., M.W. and C.W. appreciate the direct funding through iDiv. For all further acknowledgements see the Supplementary Information.

Author information

Affiliations

  1. Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany

    • Helge Bruelheide
    • , Oliver Purschke
    • , Borja Jiménez-Alfaro
    • , Sylvia Haider
    • , Ingolf Kühn
    • , Francesco Maria Sabatini
    • , Gunnar Seidler
    • , Maria Sporbert
    • , Erik Welk
    •  & Ute Jandt
  2. German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany

    • Helge Bruelheide
    • , Jürgen Dengler
    • , Oliver Purschke
    • , Borja Jiménez-Alfaro
    • , Jens Kattge
    • , Miguel D. Mahecha
    • , Dylan Craven
    • , Sylvia Haider
    • , Ingolf Kühn
    • , Christine Römermann
    • , Francesco Maria Sabatini
    • , Maria Sporbert
    • , Risto Virtanen
    • , Erik Welk
    • , Karsten Wesche
    • , Marten Winter
    • , Christian Wirth
    •  & Ute Jandt
  3. Research Group Vegetation Ecology, Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland

    • Jürgen Dengler
  4. Plant Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany

    • Jürgen Dengler
  5. UR ‘Ecologie et Dynamique des Systèmes Anthropisés’ (EDYSAN, UMR 7058 CNRS-UPJV), CNRS, Université de Picardie Jules Verne , Amiens, France

    • Jonathan Lenoir
  6. Research Unit of Biodiversity (CSIC/UO/PA), University of Oviedo, Campus de Mieres, Mieres, Spain

    • Borja Jiménez-Alfaro
  7. Team Vegetation, Forest and Landscape Ecology, Wageningen Environmental Research (Alterra) , Wageningen, the Netherlands

    • Stephan M. Hennekens
    •  & Wim A. Ozinga
  8. GINOP Sustainable Ecosystems Group, MTA Centre for Ecological Research, Tihany, Hungary

    • Zoltán Botta-Dukát
  9. Department of Botany and Zoology, Masaryk University, Brno, Czech Republic

    • Milan Chytrý
    •  & Ilona Knollová
  10. School of Geography, University of Nottingham, University Park, Nottingham, UK

    • Richard Field
    •  & Franziska Schrodt
  11. Faculty for Agricultural and Environmental Science, University of Rostock , Rostock, Germany

    • Florian Jansen
  12. Max Planck Institute for Biogeochemistry, Jena, Germany

    • Jens Kattge
    • , Franziska Schrodt
    • , Miguel D. Mahecha
    •  & Christian Wirth
  13. Department of Ecology, Universidade Federal do Rio Grande do Sul , Porto Alegre, Brazil

    • Valério D. Pillar
  14. Department of Biology, University of North Carolina at Chapel Hill , Chapel Hill, NC, USA

    • Robert K. Peet
  15. Department of Biology, Santa Clara University, Santa Clara, CA, USA

    • Brody Sandel
  16. Department of Conservation Biology, Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands

    • Peter van Bodegom
  17. Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic

    • Jan Altman
    • , Jiří Doležal
    •  & Petr Petřík
  18. Escuela de Ciencias Agropecuarias y Ambientales – ECAPMA, Universidad Nacional Abierta y a Distancia – UNAD, Sede José Celestino Mutis, Bogotá, Colombia

    • Esteban Alvarez-Dávila
  19. Department of Forestry and Environmental Science, Shahjalal University of Science and Technology , Sylhet, Bangladesh

    • Mohammed A. S. Arfin Khan
  20. Department of Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth , Bayreuth, Germany

    • Mohammed A. S. Arfin Khan
    •  & Anke Jentsch
  21. Department of Environmental Biology, Sapienza University of Rome , Rome, Italy

    • Fabio Attorre
    •  & Michele De Sanctis
  22. Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sault Ste Marie, Ontario, Canada

    • Isabelle Aubin
  23. Department of Biological Sciences, International Center for Tropical Botany, Florida International University, Miami, FL, USA

    • Christopher Baraloto
  24. Campus de Cruzeiro do Su, Universidade Federal do Acre, Acre, Brazil

    • Jorcely G. Barroso
  25. Department of Green Chemistry and Technology (ISOFYS) and Department of Environment (CAVELab), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium

    • Marijn Bauters
  26. Vegetation Analysis & Plant Diversity, Albrecht von Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany

    • Erwin Bergmeier
  27. University of the Basque Country UPV/EHU, Bilbao, Spain

    • Idoia Biurrun
    •  & Corrado Marcenò
  28. Biodiversity Dynamics in a Changing World (BIOCHANGE) & Section for Ecoinformatics & Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark

    • Anne D. Bjorkman
    •  & Jens-Christian Svenning
  29. Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK

    • Benjamin Blonder
  30. Rocky Mountain Biological Laboratory, Crested Butte, CO, USA

    • Benjamin Blonder
  31. Institute of Biology, Scientific Research Center of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia

    • Andraž Čarni
  32. University of Nova Gorica, Nova Gorica, Slovenia

    • Andraž Čarni
  33. Department of Biology, Geology, Physics and Inorganic Chemistry, Universidad Rey Juan Carlos, Madrid, Spain

    • Luis Cayuela
  34. Department of Forest Ecology, Faculty of Forestry and Wood Science, Czech University of Life Sciences, Prague, Czech Republic

    • Tomáš Černý
  35. Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

    • J. Hans C. Cornelissen
  36. Department of Community Ecology, Helmholtz Centre for Environmental Research – UFZ , Halle, Germany

    • Dylan Craven
    •  & Ingolf Kühn
  37. Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany

    • Matteo Dainese
  38. Cirad, UMR EcoFoG, Campus Agronomique, Kourou, French Guiana

    • Géraldine Derroire
  39. Instituto Multidisciplinario de Biología Vegetal, CONICET and FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina

    • Sandra Díaz
  40. Department of Biology, Wake Forest University, Winston Salem, NC, USA

    • William Farfan-Rios
  41. Herbario Vargas (CUZ), Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru

    • William Farfan-Rios
  42. Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK

    • Ted R. Feldpausch
  43. Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Quebec, Canada

    • Nicole J. Fenton
  44. Centre d’Ecologie Fonctionnelle et Evolutive (UMR5175), CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, Montpellier, France

    • Eric Garnier
    •  & Cyrille Violle
  45. Terrestrial Ecosystem Research Network, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia

    • Greg R. Guerin
    •  & Anita Smyth
  46. Departamento de Ciencias Ambientales y Recursos Naturales Renovables, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile

    • Alvaro G. Gutiérrez
  47. UMR 248 MARBEC (CNRS, IFREMER, IRD, UM), Institut Français de Recherche pour l’Exploitation de la MER, Sète, France

    • Tarek Hattab
  48. The Department of Geography, University of British Columbia, Vancouver, British Columbia, Canada

    • Greg Henry
  49. Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d’Ivoire

    • Bruno Hérault
  50. UR Forests & Societies, Cirad, University of Montpellier, Montpellier, France

    • Bruno Hérault
  51. Departamento de Engenharia Florestal, Universidade do Estado de Santa Catarina, Lages, Brazil

    • Pedro Higuchi
  52. Institute of Landscape Ecology, University of Münster, Münster, Germany

    • Norbert Hölzel
  53. Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany

    • Jürgen Homeier
  54. Biodiversity, Biocenter Klein Flottbek and Botanical Garden, University of Hamburg, Hamburg, Germany

    • Norbert Jürgens
  55. Department of Vegetation Ecology, Institute of Environmental Biology, University of Wroclaw, Wrocław, Poland

    • Zygmunt Kącki
  56. Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland

    • Dirk N. Karger
    •  & Michael Kessler
  57. Swiss Federal Research Institute WSL, Birmensdorf, Switzerland

    • Dirk N. Karger
  58. Landscape Ecology Group, Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany

    • Michael Kleyer
  59. Central Siberian Botanical Garden SB RAS, Novosibirsk, Russia

    • Andrey Y. Korolyuk
  60. School of Science, Environmental Research Institute, University of Waikato, Hamilton, New Zealand

    • Daniel C. Laughlin
  61. Department of Botany, University of Wyoming, Laramie, WY, USA

    • Daniel C. Laughlin
  62. Naturalis Biodiversity Cente, Leiden University, Leiden, the Netherlands

    • Frederic Lens
  63. Agroecology, University of Göttingen, Göttingen, Germany

    • Jacqueline Loos
  64. UCA, INRA, VetAgro Sup, UREP, Clermont-Ferrand, France

    • Frédérique Louault
  65. Department of Ecology and Environmental Protection, Faculty of Biology, University of Sofia, Sofia, Bulgaria

    • Mariyana I. Lyubenova
  66. Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK

    • Yadvinder Malhi
  67. ICREA, Barcelona, Spain

    • Maurizio Mencuccini
  68. CREAF, Barcelona, Spain

    • Maurizio Mencuccini
    • , Josep Penuelas
    •  & Jordi Sardans
  69. Millennium Seed Bank, Conservation Science, Royal Botanic Gardens Kew, Ardingly, UK

    • Jonas V. Müller
  70. AMAP, IRD, CIRAD, CNRS, INRA, Université Montpellier, Montpellier, France

    • Jérôme Munzinger
  71. School of GeoSciences, University of Edinburgh, Edinburgh, UK

    • Isla H. Myers-Smith
  72. Conservación y Manejo de Vida Silvestre, Universidad Estatal Amazónica, Puyo, Ecuador

    • David A. Neill
  73. Department of Crop Science and Plant Biology, Estonian University of Life Science, Tartu, Estonia

    • Ülo Niinemets
    •  & Josep Penuelas
  74. Landcare Research, Lincoln, New Zealand

    • Kate H. Orwin
  75. Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, the Netherlands

    • Wim A. Ozinga
  76. Global Ecology Unit, CREAF-CEAB-UAB, CSIC, Cerdanyola del Vallès, Spain

    • Josep Penuelas
    •  & Jordi Sardans
  77. Department of Evolutionary Biology, Faculty of Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain

    • Aaron Pérez-Haase
  78. Spanish Research Council (CEAB-CSIC), Center for Advanced Studies of Blanes, Blanes, Spain

    • Aaron Pérez-Haase
  79. School of Geography, University of Leeds, Leeds, UK

    • Oliver L. Phillips
  80. University of Tartu, Tartu, Estonia

    • Meelis Pärtel
  81. Department of Forest Resources, University of Minnesota, St. Paul, MN, USA

    • Peter B. Reich
  82. Hawkesbury Institute for the Environment, Western Sydney University, Sydney, New South Wales, Australia

    • Peter B. Reich
  83. Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany

    • Christine Römermann
  84. Departamento de Engenharia Florestal, Universidade Regional de Blumenau, Blumenau, Brazil

    • Arthur V. Rodrigues
  85. Data and Modelling Centre, Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany

    • Marco Schmidt
  86. Department of Biology University of La Serena, La Serena, Chile

    • Javier Eduardo Silva Espejo
  87. Laboratório de Botânica e Ecologia Vegetal, Centro de Ciências Biológicas e da Natureza, Museu Universitário, Universidade Federal do Acre, Rio Branco, Brazil

    • Marcos Silveira
  88. College of Urban and Environmental Sciences, Peking University, Beijing, China

    • Zhiyao Tang
  89. Iwokrama International Centre for Rain Forest Conservation and Development, Georgetown, Guyana

    • Raquel Thomas
  90. Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece

    • Ioannis Tsiripidis
  91. Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria

    • Kiril Vassilev
  92. Department of Physiological Diversity, Helmholtz Center for Environmental Research – UFZ, Leipzig, Germany

    • Risto Virtanen
  93. Department of Ecology & Genetics, University of Oulu, Oulu, Finland

    • Risto Virtanen
  94. Department of Biology, University of Wisconsin – Eau Claire, Eau Claire, WI, USA

    • Evan Weiher
  95. Senckenberg Museum of Natural History Görlitz, Görlitz, Germany

    • Karsten Wesche
  96. International Institute (IHI) Zittau, TU Dresden, Zittau, Germany

    • Karsten Wesche
  97. Systematic Botany and Functional Biodiversity, University of Leipzig, Leipzig, Germany

    • Christian Wirth

Authors

  1. Search for Helge Bruelheide in:

  2. Search for Jürgen Dengler in:

  3. Search for Oliver Purschke in:

  4. Search for Jonathan Lenoir in:

  5. Search for Borja Jiménez-Alfaro in:

  6. Search for Stephan M. Hennekens in:

  7. Search for Zoltán Botta-Dukát in:

  8. Search for Milan Chytrý in:

  9. Search for Richard Field in:

  10. Search for Florian Jansen in:

  11. Search for Jens Kattge in:

  12. Search for Valério D. Pillar in:

  13. Search for Franziska Schrodt in:

  14. Search for Miguel D. Mahecha in:

  15. Search for Robert K. Peet in:

  16. Search for Brody Sandel in:

  17. Search for Peter van Bodegom in:

  18. Search for Jan Altman in:

  19. Search for Esteban Alvarez-Dávila in:

  20. Search for Mohammed A. S. Arfin Khan in:

  21. Search for Fabio Attorre in:

  22. Search for Isabelle Aubin in:

  23. Search for Christopher Baraloto in:

  24. Search for Jorcely G. Barroso in:

  25. Search for Marijn Bauters in:

  26. Search for Erwin Bergmeier in:

  27. Search for Idoia Biurrun in:

  28. Search for Anne D. Bjorkman in:

  29. Search for Benjamin Blonder in:

  30. Search for Andraž Čarni in:

  31. Search for Luis Cayuela in:

  32. Search for Tomáš Černý in:

  33. Search for J. Hans C. Cornelissen in:

  34. Search for Dylan Craven in:

  35. Search for Matteo Dainese in:

  36. Search for Géraldine Derroire in:

  37. Search for Michele De Sanctis in:

  38. Search for Sandra Díaz in:

  39. Search for Jiří Doležal in:

  40. Search for William Farfan-Rios in:

  41. Search for Ted R. Feldpausch in:

  42. Search for Nicole J. Fenton in:

  43. Search for Eric Garnier in:

  44. Search for Greg R. Guerin in:

  45. Search for Alvaro G. Gutiérrez in:

  46. Search for Sylvia Haider in:

  47. Search for Tarek Hattab in:

  48. Search for Greg Henry in:

  49. Search for Bruno Hérault in:

  50. Search for Pedro Higuchi in:

  51. Search for Norbert Hölzel in:

  52. Search for Jürgen Homeier in:

  53. Search for Anke Jentsch in:

  54. Search for Norbert Jürgens in:

  55. Search for Zygmunt Kącki in:

  56. Search for Dirk N. Karger in:

  57. Search for Michael Kessler in:

  58. Search for Michael Kleyer in:

  59. Search for Ilona Knollová in:

  60. Search for Andrey Y. Korolyuk in:

  61. Search for Ingolf Kühn in:

  62. Search for Daniel C. Laughlin in:

  63. Search for Frederic Lens in:

  64. Search for Jacqueline Loos in:

  65. Search for Frédérique Louault in:

  66. Search for Mariyana I. Lyubenova in:

  67. Search for Yadvinder Malhi in:

  68. Search for Corrado Marcenò in:

  69. Search for Maurizio Mencuccini in:

  70. Search for Jonas V. Müller in:

  71. Search for Jérôme Munzinger in:

  72. Search for Isla H. Myers-Smith in:

  73. Search for David A. Neill in:

  74. Search for Ülo Niinemets in:

  75. Search for Kate H. Orwin in:

  76. Search for Wim A. Ozinga in:

  77. Search for Josep Penuelas in:

  78. Search for Aaron Pérez-Haase in:

  79. Search for Petr Petřík in:

  80. Search for Oliver L. Phillips in:

  81. Search for Meelis Pärtel in:

  82. Search for Peter B. Reich in:

  83. Search for Christine Römermann in:

  84. Search for Arthur V. Rodrigues in:

  85. Search for Francesco Maria Sabatini in:

  86. Search for Jordi Sardans in:

  87. Search for Marco Schmidt in:

  88. Search for Gunnar Seidler in:

  89. Search for Javier Eduardo Silva Espejo in:

  90. Search for Marcos Silveira in:

  91. Search for Anita Smyth in:

  92. Search for Maria Sporbert in:

  93. Search for Jens-Christian Svenning in:

  94. Search for Zhiyao Tang in:

  95. Search for Raquel Thomas in:

  96. Search for Ioannis Tsiripidis in:

  97. Search for Kiril Vassilev in:

  98. Search for Cyrille Violle in:

  99. Search for Risto Virtanen in:

  100. Search for Evan Weiher in:

  101. Search for Erik Welk in:

  102. Search for Karsten Wesche in:

  103. Search for Marten Winter in:

  104. Search for Christian Wirth in:

  105. Search for Ute Jandt in:

Contributions

H.B. and U.J. wrote the first draft of the manuscript, with considerable input by B.J.-A. and R.F. Most of the statistical analyses and the production of the graphs were carried out by H.B.. H.B., O.Pu. and U.J. initiated sPlot as an sDiv working group and iDiv platform. J.De. compiled the plot databases globally. J.De., S.M.H., U.J., O.Pu. and F.J. harmonized vegetation databases. J.De. and B.J.-A. coordinated the sPlot consortium. J.K. provided the trait data from TRY. F.S. performed the trait data gap filling. O.Pu. produced the taxonomic backbone. B.J.-A., G.S. and E. Welk compiled environmental data and produced the global maps. S.M.H. wrote the Turboveg v3 software, which holds the sPlot database. J.L. and T.H. wrote the resampling algorithm. Many authors participated in one or more of the three sPlot workshops at iDiv where the sPlot initiative was conceived and planned, and evaluation of the data and first drafts were discussed. All other authors contributed data. All authors contributed to writing the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Helge Bruelheide.

Supplementary information

  1. Supplementary Information

    Supplementary Tables 1 and 2, Supplementary Figures 1–11, and Supplementary Acknowledgements

  2. Reporting Summary

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41559-018-0699-8

Further reading