Article | Published:

Change in dominance determines herbivore effects on plant biodiversity

Nature Ecology & Evolutionvolume 2pages19251932 (2018) | Download Citation


Herbivores alter plant biodiversity (species richness) in many of the world’s ecosystems, but the magnitude and the direction of herbivore effects on biodiversity vary widely within and among ecosystems. One current theory predicts that herbivores enhance plant biodiversity at high productivity but have the opposite effect at low productivity. Yet, empirical support for the importance of site productivity as a mediator of these herbivore impacts is equivocal. Here, we synthesize data from 252 large-herbivore exclusion studies, spanning a 20-fold range in site productivity, to test an alternative hypothesis—that herbivore-induced changes in the competitive environment determine the response of plant biodiversity to herbivory irrespective of productivity. Under this hypothesis, when herbivores reduce the abundance (biomass, cover) of dominant species (for example, because the dominant plant is palatable), additional resources become available to support new species, thereby increasing biodiversity. By contrast, if herbivores promote high dominance by increasing the abundance of herbivory-resistant, unpalatable species, then resource availability for other species decreases reducing biodiversity. We show that herbivore-induced change in dominance, independent of site productivity or precipitation (a proxy for productivity), is the best predictor of herbivore effects on biodiversity in grassland and savannah sites. Given that most herbaceous ecosystems are dominated by one or a few species, altering the competitive environment via herbivores or by other means may be an effective strategy for conserving biodiversity in grasslands and savannahs globally.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

While not all raw species abundances are publicly available because of lack of permission from data owners (contact individual data set owners listed in Supplementary Table 1), all data generated and analysed during the current study (site-level richness response to herbivory, site-level Berger–Parker and Simpson’s dominance response to herbivory, site ANPP, and site MAP) are provided in Supplementary Table 2.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

  2. 2.

    Bakker, E. S., Ritchie, M. E., Olff, H., Milchunas, D. G. & Knops, J. M. H. Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol. Lett. 9, 780–788 (2006).

  3. 3.

    Proulx, M. & Mazumder, A. Reversal of grazing impact on plant species richness in nutrient-poor vs. nutrient-rich ecosystems. Ecology 79, 2581–2592 (1998).

  4. 4.

    Worm, B., Lotze, H. K., Hillebrand, H. & Sommer, U. Consumer versus resource control of species diversity and ecosystem functioning. Nature 417, 848–851 (2002).

  5. 5.

    Borer, E. T. et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508, 517–520 (2014).

  6. 6.

    Hillebrand, H. et al. Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proc. Natl Acad. Sci. USA 104, 10904–10909 (2007).

  7. 7.

    Olff, H. & Ritchie, M. E. Effects of herbivores on grassland plant diversity. Trends Ecol. Evol. 13, 261–265 (1998).

  8. 8.

    Osem, Y., Perevolotsky, A. & Kigel, J. Grazing effect on diversity of annual plant communities in a semi-arid rangeland: interactions with small-scale spatial and temporal variation in primary productivity. J. Ecol. 90, 936–946 (2002).

  9. 9.

    Lezama, F. et al. Variation of grazing-induced vegetation changes across a large-scale productivity gradient. J. Veg. Sci. 25, 8–21 (2014).

  10. 10.

    Frank, D. A., McNaughton, S. J. & Tracy, B. F. The ecology of the Earth’s grazing ecosystems. BioScience 48, 513–521 (1998).

  11. 11.

    McNaughton, S. J. & Wolf, L. L. Dominance and the niche in ecological systems. Science 167, 131–139 (1970).

  12. 12.

    Koerner, S. E. et al. Plant community response to loss of large herbivores differs between North American and South African savanna grasslands. Ecology 95, 808–816 (2014).

  13. 13.

    Milchunas, D. G. & Lauenroth, W. K. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol. Monogr. 63, 327–366 (1993).

  14. 14.

    Eldridge, D. J., Poore, A. G. B., Ruiz-Colmenero, M., Letnic, M. & Soliveres, S. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing. Ecol. Appl. 26, 1273–1283 (2016).

  15. 15.

    Smith, M. D. & Knapp, A. K. Dominant species maintain ecosystem function with non-random species loss. Ecol. Lett. 6, 509–517 (2003).

  16. 16.

    Collins, S. L. & Xia, Y. Long-term dynamics and hotspots of change in a desert grassland plant community. Am. Nat. 185, E30–E43 (2015).

  17. 17.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).

  18. 18.

    Magurran, A. E. Measuring Biological Diversity (Wiley-Blackwell, New York, 2013)..

  19. 19.

    Smith, B. & Wilson, J B. A consumer’s guide to evenness indices. Oikos 76, 70–82 (1996).

  20. 20.

    Sala, O. E., Gherardi, L. A., Reichmann, L., Jobbágy, E. & Peters, D. Legacies of precipitation fluctuations on primary production: theory and data synthesis. Phil. Trans. R. Soc. B 367, 3135–3144 (2012).

  21. 21.

    Forrestel, E. J. et al. Different clades and traits yield similar grassland functional responses. Proc. Natl Acad. Sci. USA 114, 705–710 (2017).

  22. 22.

    Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).

  23. 23.

    Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).

  24. 24.

    Eby, S. et al. Loss of a large grazer impacts savanna grassland plant communities similarly in North America and South Africa. Oecologia 175, 293–303 (2014).

  25. 25.

    Burkepile, D. E. et al. Fire frequency drives habitat selection by a diverse herbivore guild impacting top-down control of plant communities in an African savanna. Oikos 125, 1636–1646 (2016).

  26. 26.

    Collins, S. L., Knapp, A. K., Briggs, J. M., Blair, J. M. & Steinauer, E. M. Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 280, 745–747 (1998).

  27. 27.

    McNaughton, S. J. Serengeti grassland ecology: the role of composite environmental factors and contingency in community organization. Ecol. Monogr. 53, 291–320 (1983).

  28. 28.

    Plas, F., Howison, R. A., Mpanza, N., Cromsigt, J. P. G. M. & Olff, H. Different‐sized grazers have distinctive effects on plant functional composition of an African savannah. J. Ecol. 104, 864–875 (2016).

  29. 29.

    Whittaker, R. H. Dominance and diversity in land plant communities: numerical relations of species express the importance of competition in community function and evolution. Science 147, 250–260 (1965).

  30. 30.

    Smith, M. D., Wilcox, J. C., Kelly, T. & Knapp, A. K. Dominance not richness determines invasibility of tallgrass prairie. Oikos 106, 253–262 (2004).

  31. 31.

    Milchunas, D. G., Sala, O. E. & Lauenroth, W. K. A generalized model of the effects of grazing by large herbivores on grassland community structure. Am. Nat. 132, 87–106 (1988).

  32. 32.

    Yang, Z. et al. Daytime warming lowers community temporal stability by reducing the abundance of dominant, stable species. Glob. Change Biol. 23, 154–163 (2017).

  33. 33.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

Download references


Funding for this synthesis was provided for by USDA AFRI Foundational Conference Grant (award no. 2018-67013-27400). We would like to thank the National Evolutionary Synthesis Center (Grasslands Working Group), the School of Global Environmental Sustainability at Colorado State University and the National Center for Ecological Analysis and Synthesis for hosting working meetings that led to these analyses. We also thank M. Ritchie, D. Augustine and R. Pringle for helpful comments on an earlier version of the manuscript. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Individual sites acknowledge funding support: Kenya Long-term Exclosure Experiment—NFS DEB 12-56004; Jornada—NSF DEB-0618210; Konza Prairie and Kruger National Park—NSF DEB 0841917; Kruger National Park—NSF DEB 1712786.

Author information

Author notes

    • Ayana Angassa

    Present address: Department of Animal Science and Production, Botswana University of Agriculture and Natural Resources, Gaborone, Botswana

    • Dan G. Milchunas

    Present address: PO Box 943, LaPorte, CO, USA


  1. Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA

    • Sally E. Koerner
  2. Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA

    • Melinda D. Smith
    • , Alan K. Knapp
    •  & Nathan P. Lemoine
  3. Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA

    • Deron E. Burkepile
  4. Jornada LTER Program & Plant and Environmental Sciences Department, New Mexico State University, Las Cruces, NM, USA

    • Niall P. Hanan
  5. Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA

    • Meghan L. Avolio
  6. Department of Biology, University of New Mexico, Albuquerque, NM, USA

    • Scott L. Collins
    •  & Lauren E. Baur
  7. Department of Viticulture and Enology, University of California, Davis, Davis, CA, USA

    • Elisabeth J. Forrestel
  8. Department of Marine and Environmental Sciences, Northeastern University, Boston, MA, USA

    • Stephanie Eby
  9. South African Environmental Observation Network, Ndlovu Node, Scientific Services, Kruger National Park, Phalaborwa, South Africa

    • Dave I. Thompson
  10. School of Geography, Archaeology, and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa

    • Dave I. Thompson
  11. Tecnológico Nacional de México/I.T. Roque, Celaya, Mexico

    • Gerardo A. Aguado-Santacruz
  12. Jornada Basin LTER Program, New Mexico State University, Las Cruces, NM, USA

    • John P. Anderson
  13. Department of Biology, Wake Forest University, Winston-Salem, NC, USA

    • T. Michael Anderson
  14. School of Animal and Range Sciences, Hawassa University, Hawassa, Ethiopia

    • Ayana Angassa
  15. Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India

    • Sumanta Bagchi
  16. Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands

    • Elisabeth S. Bakker
  17. Alice Springs, Northern Territory, Australia

    • Gary Bastin
  18. Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA

    • Karen H. Beard
    • , Andrew Kulmatiski
    • , Kyle C. Nehring
    •  & Kari E. Veblen
  19. U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT, USA

    • Erik A. Beever
  20. Department of Ecology, Montana State University, Bozeman, MT, USA

    • Erik A. Beever
  21. Department of Biology, University of Central Florida, Orlando, FL, USA

    • Patrick J. Bohlen
  22. Archbold Biological Station, MacArthur Agro-ecology Research Center, Venus, FL, USA

    • Elizabeth H. Boughton
  23. UCSB Kenneth S. Norris Rancho Marino Reserve, Cambria, CA, USA

    • Don Canestro
  24. INTA Cuenca del Salado, Grupo de Producción Vegetal, Rauch, Buenos Aires, Argentina

    • Ariela Cesa
  25. IFEVA-CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina

    • Enrique Chaneton
  26. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China

    • Jimin Cheng
    •  & Liang Guo
  27. Environmental Studies, University of California, Santa Barbara, CA, USA

    • Carla M. D’Antonio
  28. Université Grenoble Alpes, Irstea, UR LESSEM, Saint-Martin-d’Hères, France

    • Claire Deleglise
    •  & Gregory Loucougaray
  29. Institut Polytechnique Rural/Institut de Formation et de Recherche Appliquee, Katibougou, Mali

    • Fadiala Dembélé
  30. Ecosystem Mangement Science, Science Division, NSW Office of Environment and Heritage, Merimbula, New South Wales, Australia

    • Josh Dorrough
  31. Centre for Ecosystem Studies, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia

    • David J. Eldridge
  32. Brackenridge Field Laboratory, University of Texas, Austin, TX, USA

    • Barbara Fernandez-Going
  33. Island Ecology and Biogeography Group, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Canary Islands, Spain

    • Silvia Fernández-Lugo
  34. Department of Natural Resource Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada

    • Lauchlan H. Fraser
  35. Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada

    • Bill Freedman
    •  & Gonzalo García-Salgado
  36. Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA

    • Jacob R. Goheen
  37. New Zealand Forest Surveys, Napier, New Zealand

    • Sean Husheer
  38. Université des Sciences, des Techniques et des Technologies (USTTB), Bamako, Mali

    • Moussa Karembé
  39. School of Biological Sciences, University of Nebraska, Lincoln, NE, USA

    • Johannes M. H. Knops
  40. School of Natural Resource Management, Nelson Mandela University, George, South Africa

    • Tineke Kraaij
  41. Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland

    • Minna-Maarit Kytöviita
  42. Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay

    • Felipe Lezama
  43. CERZOS-CONICET and Departamento de Biología, Bioquímica y Farmacia, UNS, Bahía Blanca, Argentina

    • Alejandro Loydi
  44. Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, USA

    • Dan G. Milchunas
  45. South African Environmental Observation Network: Arid Lands Node, Prince Albert, South Africa

    • Suzanne J. Milton
  46. Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, Victoria, Australia

    • John W. Morgan
  47. Arthur Rylah Institute, Department of Environment, Land, Water and Planning, Heidelberg, Victoria, Australia

    • Claire Moxham
  48. Conservation Ecology Group, University of Groningen, Groningen, The Netherlands

    • Han Olff
  49. Department of Biology, University of Florida, Gainesville, FL, USA

    • Todd M. Palmer
  50. Department of Life Sciences, University of Alcalá, Alcalá de Henares, Spain

    • Salvador Rebollo
  51. The Nature Conservancy, Lander, WY, USA

    • Corinna Riginos
  52. Research Unit Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland

    • Anita C. Risch
    • , Martin Schütz
    •  & Martijn L. Vandegehuchte
  53. Department of Conservation Biology, Estación Biológica de Doñana CSIC, Sevilla, Spain

    • Marta Rueda
  54. School of Biology, University of Leeds, Leeds, UK

    • Mahesh Sankaran
  55. National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India

    • Mahesh Sankaran
    •  & Yadugiri V. Tiruvaimozhi
  56. Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan

    • Takehiro Sasaki
  57. U.S. Geological Survey, Fort Collins Science Center and Colorado State University, Fort Collins, CO, USA

    • Kathryn A. Schoenecker
  58. School of Applied and Biomedical Science, Federation University, Ballarat, Victoria, Australia

    • Nick L. Schultz
  59. Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany

    • Angelika Schwabe
    •  & Christian Storm
  60. Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa

    • Frances Siebert
  61. Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands

    • Christian Smit
  62. University of Wisconsin Green Bay, Natural and Applied Sciences, Green Bay, WI, USA

    • Karen A. Stahlheber
  63. USDA-ARS, Fort Keogh Livestock and Range Research Laboratory, Miles City, MT, USA

    • Dustin J. Strong
    •  & Lance T. Vermeire
  64. College of Animal Science and Technology, Northwest A&F University, Yangling, China

    • Jishuai Su
  65. Earth Research Institute, University of California, Santa Barbara, CA, USA

    • Claudia Tyler
  66. Office of Environment and Heritage, Buronga, New South Wales, Australia

    • James Val
  67. Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium

    • Martijn L. Vandegehuchte
  68. Department of Biological Sciences, Kent State University, Kent, OH, USA

    • David Ward
  69. Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

    • Jianshuang Wu
  70. Department of Plant Sciences, University of California, Davis, Davis, CA, USA

    • Truman P. Young
  71. Mpala Research Centre, Nanyuki, Kenya

    • Truman P. Young
  72. National Hulunber Grassland Ecosystem Observation and Research Station/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China

    • Qiang Yu
  73. Department of Botany, University of Wyoming, Laramie, WY, USA

    • Tamara Jane Zelikova


  1. Search for Sally E. Koerner in:

  2. Search for Melinda D. Smith in:

  3. Search for Deron E. Burkepile in:

  4. Search for Niall P. Hanan in:

  5. Search for Meghan L. Avolio in:

  6. Search for Scott L. Collins in:

  7. Search for Alan K. Knapp in:

  8. Search for Nathan P. Lemoine in:

  9. Search for Elisabeth J. Forrestel in:

  10. Search for Stephanie Eby in:

  11. Search for Dave I. Thompson in:

  12. Search for Gerardo A. Aguado-Santacruz in:

  13. Search for John P. Anderson in:

  14. Search for T. Michael Anderson in:

  15. Search for Ayana Angassa in:

  16. Search for Sumanta Bagchi in:

  17. Search for Elisabeth S. Bakker in:

  18. Search for Gary Bastin in:

  19. Search for Lauren E. Baur in:

  20. Search for Karen H. Beard in:

  21. Search for Erik A. Beever in:

  22. Search for Patrick J. Bohlen in:

  23. Search for Elizabeth H. Boughton in:

  24. Search for Don Canestro in:

  25. Search for Ariela Cesa in:

  26. Search for Enrique Chaneton in:

  27. Search for Jimin Cheng in:

  28. Search for Carla M. D’Antonio in:

  29. Search for Claire Deleglise in:

  30. Search for Fadiala Dembélé in:

  31. Search for Josh Dorrough in:

  32. Search for David J. Eldridge in:

  33. Search for Barbara Fernandez-Going in:

  34. Search for Silvia Fernández-Lugo in:

  35. Search for Lauchlan H. Fraser in:

  36. Search for Bill Freedman in:

  37. Search for Gonzalo García-Salgado in:

  38. Search for Jacob R. Goheen in:

  39. Search for Liang Guo in:

  40. Search for Sean Husheer in:

  41. Search for Moussa Karembé in:

  42. Search for Johannes M. H. Knops in:

  43. Search for Tineke Kraaij in:

  44. Search for Andrew Kulmatiski in:

  45. Search for Minna-Maarit Kytöviita in:

  46. Search for Felipe Lezama in:

  47. Search for Gregory Loucougaray in:

  48. Search for Alejandro Loydi in:

  49. Search for Dan G. Milchunas in:

  50. Search for Suzanne J. Milton in:

  51. Search for John W. Morgan in:

  52. Search for Claire Moxham in:

  53. Search for Kyle C. Nehring in:

  54. Search for Han Olff in:

  55. Search for Todd M. Palmer in:

  56. Search for Salvador Rebollo in:

  57. Search for Corinna Riginos in:

  58. Search for Anita C. Risch in:

  59. Search for Marta Rueda in:

  60. Search for Mahesh Sankaran in:

  61. Search for Takehiro Sasaki in:

  62. Search for Kathryn A. Schoenecker in:

  63. Search for Nick L. Schultz in:

  64. Search for Martin Schütz in:

  65. Search for Angelika Schwabe in:

  66. Search for Frances Siebert in:

  67. Search for Christian Smit in:

  68. Search for Karen A. Stahlheber in:

  69. Search for Christian Storm in:

  70. Search for Dustin J. Strong in:

  71. Search for Jishuai Su in:

  72. Search for Yadugiri V. Tiruvaimozhi in:

  73. Search for Claudia Tyler in:

  74. Search for James Val in:

  75. Search for Martijn L. Vandegehuchte in:

  76. Search for Kari E. Veblen in:

  77. Search for Lance T. Vermeire in:

  78. Search for David Ward in:

  79. Search for Jianshuang Wu in:

  80. Search for Truman P. Young in:

  81. Search for Qiang Yu in:

  82. Search for Tamara Jane Zelikova in:


S.E.K. managed the project including conceptualizing the questions, collecting and analysing the data, developing the figures and writing the manuscript. M.D.S. conceptualized the questions and wrote the manuscript. D.E.B. conceptualized the questions, collected the data and wrote the manuscript. N.P.H. performed simulations and wrote the manuscript. M.L.A. and N.P.L. executed the path analyses and developed the figures. S.L.C. and A.K.K. wrote the manuscript. S.E., E.J.F. and D.I.T. contributed to data collection and management. S.E.K., M.D.S., D.E.B., N.P.H., M.L.A., S.L.C., A.K.K., N.P.L., E.J.F., S.E. and D.I.T. attended multiple working groups to complete this manuscript while all other co-authors contributed data to the synthesis; all authors (both members of the working group and not) edited the manuscript. See the author contribution table (Supplementary Table 11) for a complete list of contributions.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Sally E. Koerner.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–4 and Supplementary Tables 1–10

  2. Reporting Summary

  3. Supplementary Table 11

    Detailed list of author contributions

About this article

Publication history