Article | Published:

Isotopic evidence for oligotrophication of terrestrial ecosystems

Nature Ecology & Evolutionvolume 2pages17351744 (2018) | Download Citation

Subjects

Abstract

Human societies depend on an Earth system that operates within a constrained range of nutrient availability, yet the recent trajectory of terrestrial nitrogen (N) availability is uncertain. Examining patterns of foliar N concentrations and isotope ratios (δ15N) from more than 43,000 samples acquired over 37 years, here we show that foliar N concentration declined by 9% and foliar δ15N declined by 0.6–1.6‰. Examining patterns across different climate spaces, foliar δ15N declined across the entire range of mean annual temperature and mean annual precipitation tested. These results suggest declines in N supply relative to plant demand at the global scale. In all, there are now multiple lines of evidence of declining N availability in many unfertilized terrestrial ecosystems, including declines in δ15N of tree rings and leaves from herbarium samples over the past 75–150 years. These patterns are consistent with the proposed consequences of elevated atmospheric carbon dioxide and longer growing seasons. These declines will limit future terrestrial carbon uptake and increase nutritional stress for herbivores.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data sets generated during and/or analysed during the current study are available in the Dryad repository (https://doi.org/10.5061/dryad.v2k2607). All codes used for statistical analyses and figure generation are available on Dryad (https://doi.org/10.5061/dryad.v2k2607).

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

  2. 2.

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

  3. 3.

    Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philo Trans. R. Soc. B 368, 20130164 (2013).

  4. 4.

    Clark, C. M., Morefield, P. E., Gilliam, F. S. & Pardo, L. H. Estimated losses of plant biodiversity in the United States from historical N deposition (1985–2010). Ecology 94, 1441–1448 (2013).

  5. 5.

    de Vries, W., Kros, J., Kroeze, C. & Seitzinger, S. P. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr. Opin. Environ. Sustain. 5, 392–402 (2013).

  6. 6.

    Sinha, E., Michalak, A. & Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 357, 405–408 (2017).

  7. 7.

    Vitousek, P. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).

  8. 8.

    Luo, Y. et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54, 731–739 (2004).

  9. 9.

    Gill, R. A. et al. Nonlinear grassland responses to past and future atmospheric CO2. Nature 417, 279–282 (2002).

  10. 10.

    Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E. & McMurtrie, R. E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl Acad. Sci. USA 107, 19368–19373 (2010).

  11. 11.

    Feng, Z. et al. Constraints to nitrogen acquisition of terrestrial plants under elevated CO2. Glob. Change Biol. 21, 3152–3168 (2015).

  12. 12.

    Elmore, A. J., Nelson, D. M. & Craine, J. M. Earlier springs are causing reduced nitrogen availability in North American eastern deciduous forests. Nat. Plants 2, 16133 (2016).

  13. 13.

    Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11, 2027–2054 (2014).

  14. 14.

    Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59 (2010).

  15. 15.

    Craine, J. M., Elmore, A. & Angerer, J. P. Long-term declines in dietary nutritional quality for North American cattle. Environ. Res. Lett. 12, 044019 (2017).

  16. 16.

    Stiling, P. & Cornelissen, T. How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Glob. Change Biol. 13, 1823–1842 (2007).

  17. 17.

    Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 980–992 (2009).

  18. 18.

    Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 1, 1–26 (2015).

  19. 19.

    Garten, C. T. Variation in foliar 15N abundance and the availability of soil-nitrogen on Walker Branch watershed. Ecology 74, 2098–2113 (1993).

  20. 20.

    Werner, G. D., Cornwell, W. K., Sprent, J. I., Kattge, J. & Kiers, E. T. A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nat. Commun. 5, 4087 (2014).

  21. 21.

    Brundrett, M. C. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320, 37–77 (2009).

  22. 22.

    Craine, J. M. et al. Convergence of soil nitrogen isotopes across global climate gradients. Sci. Rep. 5, 8280 (2015).

  23. 23.

    Hietz, P. et al. Long-term change in the nitrogen cycle of tropical forests. Science 334, 664–666 (2011).

  24. 24.

    Decina, S. M., Templer, P. H., Hutyra, L. R., Gately, C. K. & Rao, P. Variability, drivers, and effects of atmospheric nitrogen inputs across an urban area: emerging patterns among human activities, the atmosphere, and soils. Sci. Total Environ. 609, 1524–1534 (2017).

  25. 25.

    McLauchlan, K. K. et al. Centennial-scale reductions in nitrogen availability in temperate forests of the United States. Sci. Rep. 7, 7856 (2017).

  26. 26.

    Jonard, M. et al. Tree mineral nutrition is deteriorating in Europe. Glob. Change Biol. 21, 418–430 (2015).

  27. 27.

    McLauchlan, K. K., Ferguson, C. J., Wilson, I. E., Ocheltree, T. W. & Craine, J. M. Thirteen decades of foliar isotopes indicate declining nitrogen availability in central North American grasslands. New Phytol. 187, 1135–1145 (2010).

  28. 28.

    Ziska, L. H. et al. Rising atmospheric CO2 is reducing the protein concentration of a floral pollen source essential for North American bees. Proc. Biol. Sci. 283, 20160414 (2016).

  29. 29.

    Gruneberg, E., Ziche, D. & Wellbrock, N. Organic carbon stocks and sequestration rates of forest soils in Germany. Glob. Change Biol. 20, 2644–2662 (2014).

  30. 30.

    Durán, J. et al. Climate change decreases nitrogen pools and mineralization rates in northern hardwood forests. Ecosphere 7, e01251 (2016).

  31. 31.

    Eshleman, K. N., Sabo, R. D. & Kline, K. M. Surface water quality is improving due to declining atmospheric N deposition. Environ. Sci. Technol. 47, 12193–12200 (2013).

  32. 32.

    Sabo, R. D. et al. Watershed-scale changes in terrestrial nitrogen cycling during a period of decreased atmospheric nitrate and sulfur deposition. Atmos. Environ. 146, 271–279 (2016).

  33. 33.

    Lucas, R. W. et al. Long‐term declines in stream and river inorganic nitrogen (N) export correspond to forest change. Ecol. Appl. 26, 545–556 (2016).

  34. 34.

    Bernal, S., Hedin, L. O., Likens, G. E., Gerber, S. & Buso, D. C. Complex response of the forest nitrogen cycle to climate change. Proc. Natl Acad. Sci. USA 109, 3406–3411 (2012).

  35. 35.

    Nordhaus, T., Shellenberger, M. & Blomqvist, L. The Planetary Boundaries Hypothesis. A Review of the Evidence (Breakthrough Institute, Oakland, 2012).

  36. 36.

    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

  37. 37.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  38. 38.

    New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas.Clim. Res. 21, 1–25 (2002).

  39. 39.

    Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).

  40. 40.

    Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge Univ. Press, Cambridge, 2006).

  41. 41.

    Eldridge, D. J., Wang, L. & Ruiz-Colmenero, M. Shrub encroachment alters the spatial patterns of infiltration. Ecohydrology 8, 83–93 (2015).

  42. 42.

    Lu, X., Wang, L. & McCabe, M. F. Elevated CO2 as a driver of global dryland greening. Sci. Rep. 6, 20716 (2016).

  43. 43.

    Anderson, J. T. & Gezon, Z. J. Plasticity in functional traits in the context of climate change: a case study of the subalpine forb Boechera stricta (Brassicaceae). Glob. Change Biol. 21, 1689–1703 (2015).

  44. 44.

    Aranibar, J. N., Goiran, S. B., Guevara, A. & Villagra, P. E. Carbon and nitrogen dynamics in a sandy groundwater-coupled ecosystem in the Monte Desert, indicated by plant stable isotopes. J. Arid Environ. 102, 58–67 (2014).

  45. 45.

    Averill, C. & Finzi, A. C. Increasing plant use of organic nitrogen with elevation is reflected in nitrogen uptake rates and ecosystem δ15N. Ecology 92, 883–891 (2011).

  46. 46.

    Bai, E., Boutton, T. W., Liu, F., Ben Wu, X. & Archer, S. R. Variation in woody plant δ13C along a topoedaphic gradient in a subtropical savanna parkland. Oecologia 156, 479–489 (2008).

  47. 47.

    Bai, E. et al. Spatial variation of the stable nitrogen isotope ratio of woody plants along a topoedaphic gradient in a subtropical savanna. Oecologia 159, 493–503 (2009).

  48. 48.

    Bai, S. H., Sun, F., Xu, Z. & Blumfield, T. J. Ecophysiological status of different growth stage of understorey Acacia leiocalyx and Acacia disparrima in an Australian dry sclerophyll forest subjected to prescribed burning. J. Soils Sediments 13, 1378–1385 (2013).

  49. 49.

    Bansal, S., Nilsson, M.-C. & Wardle, D. A. Response of photosynthetic carbon gain to ecosystem retrogression of vascular plants and mosses in the boreal forest. Oecologia 169, 661–672 (2012).

  50. 50.

    Baptist, F. et al. 13C and 15N allocations of two alpine species from early and late snowmelt locations reflect their different growth strategies. J. Exp. Bot. 60, 2725–2735 (2009).

  51. 51.

    Baraloto, C. et al. Decoupled leaf and stem economics in rain forest trees. Ecol. Lett. 13, 1338–1347 (2010).

  52. 52.

    Bauer, G. A. et al. in Carbon and Nitrogen Cycling in European Forest Ecosystems (ed. Schulze, E.-D.) 189–214 (Springer, Berlin, 2000).

  53. 53.

    Bauters, M. et al. Parallel functional and stoichiometric trait shifts in South-American and African forest communities with elevation. Biogeosci. Discuss. 2017, 1–27 (2017).

  54. 54.

    Bazot, S., Fresneau, C., Damesin, C. & Barthes, L. Contribution of previous year’s leaf N and soil N uptake to current year’s leaf growth in sessile oak. Biogeosciences 13, 3475–3484 (2016).

  55. 55.

    Beyschlag, W., Hanisch, S., Friedrich, S., Jentsch, A. & Werner, C. 15N natural abundance during early and late succession in a middle-European dry acidic grassland. Plant Biol. 11, 713–724 (2009).

  56. 56.

    Blonder, B., Baldwin, B. G., Enquist, B. J. & Robichaux, R. H. Variation and macroevolution in leaf functional traits in the Hawaiian silversword alliance (Asteraceae). J. Ecol. 104, 219–228 (2016).

  57. 57.

    Blumenthal, S. A., Chritz, K. L., Rothman, J. M. & Cerling, T. E. Detecting intraannual dietary variability in wild mountain gorillas by stable isotope analysis of feces. Proc. Natl Acad. Sci. USA 109, 21277–21282 (2012).

  58. 58.

    Blumenthal, S. A., Rothman, J. M., Chritz, K. L. & Cerling, T. E. Stable isotopic variation in tropical forest plants for applications in primatology. Am. J. Primatol. 78, 92 (2016).

  59. 59.

    Boeckx, P., Paulino, L., Oyarzun, C., van Cleemput, O. & Godoy, R. Soil δ15N patterns in old-growth forests of southern Chile as integrator for N-cycling. Isotopes Environ. Health Stud. 41, 249–259 (2005).

  60. 60.

    Brearley, F. Q. Nitrogen stable isotopes indicate differences in nitrogen cycling between two contrasting Jamaican montane forests. Plant Soil 367, 465–476 (2013).

  61. 61.

    Brearley, F. Q., Fine, P. V. A. & Perreijn, K. Does nitrogen availability have greater control over the formation of tropical heath forests than water stress? A hypothesis based on nitrogen isotope ratios. Acta Amazon. 41, 589–592 (2011).

  62. 62.

    Burton, J. I., Perakis, S. S., McKenzie, S. C., Lawrence, C. E. & Puettmann, K. J. Intraspecific variability and reaction norms of forest understory plant species traits. Funct. Ecol. 31, 1881–1893 (2017).

  63. 63.

    Cardon, Z. G., Stark, J. M., Herron, P. M. & Rasmussen, J. A. Sagebrush carrying out hydraulic lift enhances surface soil nitrogen cycling and nitrogen uptake into inflorescences. Proc. Natl Acad. Sci. USA 110, 18988–18993 (2013).

  64. 64.

    Carr, A. S., Chase, B. M., Boom, A. & Medina-Sanchez, J. Stable isotope analyses of rock hyrax faecal pellets, hyraceum and associated vegetation in southern Africa: implications for dietary ecology and palaeoenvironmental reconstructions. J. Arid Environ. 134, 33–48 (2016).

  65. 65.

    Chen, C., Li, J., Wang, G. & Shi, M. Accounting for the effect of temperature in clarifying the response of foliar nitrogen isotope ratios to atmospheric nitrogen deposition. Sci. Total Environ. 609, 1295–1302 (2017).

  66. 66.

    Compton, J. E., Hooker, T. D. & Perakis, S. S. Ecosystem N distribution and δ15N during a century of forest regrowth after agricultural abandonment. Ecosystems 10, 1197–1208 (2007).

  67. 67.

    Correa, S. B., Winemiller, K. & Cardenas, D. Isotopic variation among Amazonian floodplain woody plants and implications for food-web research. Biota Neotrop. 16, e20150078 (2016).

  68. 68.

    Courty, P.-E. et al. Carbon and nitrogen metabolism in mycorrhizal networks and mycoheterotrophic plants of tropical forests: a stable isotope analysis. Plant Physiol. 156, 952–961 (2011).

  69. 69.

    Couto-Vazquez, A. & Gonzalez-Prieto, S. J. Effects of biotic and abiotic factors on δ15N in young Pinus radiata. Eur. J. For. Res. 133, 631–637 (2014).

  70. 70.

    Couto-Vázquez, A. & González-Prieto, S. J. Effects of climate, tree age, dominance and growth on δ15N in young pinewoods. Trees 24, 507–514 (2010).

  71. 71.

    Craine, J. M. et al. Grazing and landscape controls on nitrogen availability across 330 South African savanna sites. Austral Ecol. 34, 731–740 (2009).

  72. 72.

    Craine, J. M., Towne, E. G., Ocheltree, T. W. & Nippert, J. B. Community traitscape of foliar nitrogen isotopes reveals N availability patterns in a tallgrass prairie. Plant Soil 356, 395–403 (2012).

  73. 73.

    Crowley, B. E., McGoogan, K. C. & Lehman, S. M. Edge effects on foliar stable isotope values in a Madagascan tropical dry forest. PLoS ONE 7, e44538 (2012).

  74. 74.

    Crowley, B. E., Rasoazanabary, E. & Godfrey, L. R. Stable isotopes complement focal individual observations and confirm dietary variability in reddish-gray mouse lemurs (Microcebus griseorufus) from southwestern Madagascar. Am. J. Phys. Anthropol. 155, 77–90 (2014).

  75. 75.

    Crowley, B. E. et al. Explaining geographical variation in the isotope composition of mouse lemurs (Microcebus). J. Biogeogr. 38, 2106–2121 (2011).

  76. 76.

    Dahlin, K. M., Asner, G. P. & Field, C. B. Environmental and community controls on plant canopy chemistry in a Mediterranean-type ecosystem. Proc. Natl Acad. Sci. USA 110, 6895–6900 (2013).

  77. 77.

    Dawes, M. A., Schleppi, P., Hattenschwiler, S., Rixen, C. & Hagedorn, F. Soil warming opens the nitrogen cycle at the alpine treeline. Glob. Change Biol. 23, 421–434 (2017).

  78. 78.

    Diaz, F. P., Frugone, M., Gutierrez, R. A. & Latorre, C. Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet. Sci. Rep. 6, 22226 (2016).

  79. 79.

    Domingues, T. F., Martinelli, L. A. & Ehleringer, J. R. Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazonia, Brazil. Plant Ecol. 193, 101–112 (2007).

  80. 80.

    Dominguez, M. T. et al. Relationships between leaf morphological traits, nutrient concentrations and isotopic signatures for Mediterranean woody plant species and communities. Plant Soil 357, 407–424 (2012).

  81. 81.

    Elmore, A. J., Craine, J. M., Nelson, D. M . & Guinn, S. M. Continental scale variability of foliar nitrogen and carbon isotopes in Populus balsamifera and their relationships with climate. Sci. Rep. 7, 7759 (2017).

  82. 82.

    Ens, E., Hutley, L. B., Rossiter-Rachor, N. A., Douglas, M. M. & Setterfield, S. A. Resource-use efficiency explains grassy weed invasion in a low-resource savanna in north Australia. Front. Plant Sci. 6, 560 (2015).

  83. 83.

    Evaristo, J. & McDonnell, J. J. Carbon, nitrogen, and water stable isotopes in plant tissue and soils across a moisture gradient in Puerto Rico. Hydrol. Process. 31, 1558–1559 (2017).

  84. 84.

    Fajardo, A. & Gundale, M. J. Combined effects of anthropogenic fires and land-use change on soil properties and processes in Patagonia, Chile. For. Ecol. Manage. 357, 60–67 (2015).

  85. 85.

    Falxa-Raymond, N., Palmer, M. I., McPhearson, T. & Griffin, K. L. Foliar nitrogen characteristics of four tree species planted in New York City forest restoration sites. Urban Ecosyst. 17, 807–824 (2014).

  86. 86.

    Falxa-Raymond, N., Patterson, A. E., Schuster, W. S. F. & Griffin, K. L. Oak loss increases foliar nitrogen, δ15N and growth rates of Betula lenta in a northern temperate deciduous forest. Tree Physiol. 32, 1092–1101 (2012).

  87. 87.

    Fang, Y. et al. Nitrogen deposition and forest nitrogen cycling along an urban-rural transect in southern China. Glob. Change Biol. 17, 872–885 (2011).

  88. 88.

    Feng, Z., Brumme, R., Xu, Y. J. & Lamersdorf, N. Tracing the fate of mineral N compounds under high ambient N deposition in a Norway spruce forest at Solling/Germany. For. Ecol. Manage. 255, 2061–2073 (2008).

  89. 89.

    Finger, R. A. et al. Effects of permafrost thaw on nitrogen availability and plant-soil interactions in a boreal Alaskan lowland. J. Ecol. 104, 1542–1554 (2016).

  90. 90.

    Frenette‐Dussault, C., Shipley, B., Léger, J. F., Meziane, D. & Hingrat, Y. Functional structure of an arid steppe plant community reveals similarities with Grime’s C‐S‐R theory. J. Veg. Sci. 23, 208–222 (2012).

  91. 91.

    Fujiyoshi, L. et al. Spatial variations in larch needle and soil 15N at a forest-grassland boundary in northern Mongolia. Isotopes Environ. Health Stud. 53, 54–69 (2017).

  92. 92.

    Gao, J., Zhao, P., Shen, W., Rao, X. & Hu, Y. Physiological homeostasis and morphological plasticity of two tree species subjected to precipitation seasonal distribution changes. Perspect. Plant Ecol. Evol. Syst. 25, 1–19 (2017).

  93. 93.

    Gao, J. et al. Suppression of nighttime sap flux with lower stem photosynthesis in Eucalyptus trees. Int. J. Biometeorol. 60, 545–556 (2016).

  94. 94.

    Godfrey, L. R. et al. What did Hadropithecus eat, and why should paleoanthropologists care? Am. J. Primatol. 78, 1098–1112 (2016).

  95. 95.

    Golluscio, R., Faigon, A. & Tanke, M. Spatial distribution of roots and nodules, and δ15N evidence of nitrogen fixation in Adesmia volckmanni, a Patagonian leguminous shrub. J. Arid Environ. 67, 328–335 (2006).

  96. 96.

    Gos, P. et al. Relative contribution of soil, management and traits to co-variations of multiple ecosystem properties in grasslands. Oecologia 180, 1001–1013 (2016).

  97. 97.

    Gray, A. et al. Does geographic origin dictate ecological strategies in Acacia senegal (L.) Willd.? Evidence from carbon and nitrogen stable isotopes. Plant Soil 369, 479–496 (2013).

  98. 98.

    Große‐Stoltenberg, A., Hellmann, C., Thiele, J., Oldeland, J. & Werner, C. Invasive acacias differ from native dune species in the hyperspectral/biochemical trait space. J. Veg. Sci. 29, 325–335 (2018).

  99. 99.

    Guerrieri, R., Lepine, L., Asbjornsen, H., Xiao, J. & Ollinger, S. V. Evapotranspiration and water use efficiency in relation to climate and canopy nitrogen in US forests. J. Geophys. Res. Biogeosci. 121, 2610–2629 (2016).

  100. 100.

    Gundale, M. J., Deluca, T. H. & Nordin, A. Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests. Glob. Change Biol. 17, 2743–2753 (2011).

  101. 101.

    Gundale, M. J., From, F., Bach, L. H. & Nordin, A. Anthropogenic nitrogen deposition in boreal forests has a minor impact on the global carbon cycle. Glob. Change Biol. 20, 276–286 (2014).

  102. 102.

    Gundale, M. J., Hyodo, F., Nilsson, M.-C. & Wardle, D. A. Nitrogen niches revealed through species and functional group removal in a boreal shrub community. Ecology 93, 1695–1706 (2012).

  103. 103.

    Gurmesa, G. A. et al. Nitrogen input 15N signatures are reflected in plant 15N natural abundances in subtropical forests in China. Biogeosciences 14, 2359–2370 (2017).

  104. 104.

    Haberer, K. et al. Effects of long-term free-air ozone fumigation on δ15N and total N in Fagus sylvatica and associated mycorrhizal fungi. Plant Biol. 9, 242–252 (2007).

  105. 105.

    Hall, S. J., Hale, R. L., Baker, M. A., Bowling, D. R. & Ehleringer, J. R. Riparian plant isotopes reflect anthropogenic nitrogen perturbations: robust patterns across land use gradients. Ecosphere 6, 1137–1146 (2015).

  106. 106.

    Hamerlynck, E. P. & McAuliffe, J. R. Growth and foliar δ15N of a Mojave desert shrub in relation to soil hydrological dynamics. J. Arid Environ. 74, 1569–1571 (2010).

  107. 107.

    Havik, G., Catenazzi, A. & Holmgren, M. Seabird nutrient subsidies benefit non-nitrogen fixing trees and alter species composition in South American coastal dry forests. PloS ONE 9, e86381 (2014).

  108. 108.

    Hawke, D. et al. Foliar and soil N and δ15N as restoration metrics at Pūtaringamotu Riccarton Bush, Christchurch city. J. R. Soc. N. Z. 47, 319–335 (2017).

  109. 109.

    Hellmann, C., Grosse-Stoltenberg, A., Laustroeer, V., Oldeland, J. & Werner, C. Retrieving nitrogen isotopic signatures from fresh leaf reflectance spectra: disentangling δ15N from biochemical and structural leaf properties. Front. Plant Sci. 6, 307 (2015).

  110. 110.

    Hellmann, C., Grosse-Stoltenberg, A., Thiele, J., Oldeland, J. & Werner, C. Heterogeneous environments shape invader impacts: integrating environmental, structural and functional effects by isoscapes and remote sensing. Sci. Rep. 7, 4118 (2017).

  111. 111.

    Hellmann, C., Rascher, K. G., Oldeland, J. & Werner, C. Isoscapes resolve species-specific spatial patterns in plant-plant interactions in an invaded Mediterranean dune ecosystem. Tree Physiol. 36, 1460–1470 (2016).

  112. 112.

    Hellmann, C. et al. Impact of an exotic N2-fixing Acacia on composition and N status of a native Mediterranean community. Acta Oecol. 37, 43–50 (2011).

  113. 113.

    Hellmann, C., Werner, C. & Oldeland, J. A spatially explicit dual-isotope approach to map regions of plant-plant interaction after exotic plant invasion. PLoS ONE 11, e0159403 (2016).

  114. 114.

    Hobbie, E. A., Rice, S. F., Weber, N. S. & Smith, J. E. Isotopic evidence indicates saprotrophy in post-fire Morchella in Oregon and Alaska. Mycologia 108, 638–645 (2016).

  115. 115.

    Hobbie, J. E. et al. Mycorrhizal fungi supply nitrogen to host plants in Arctic tundra and boreal forests: 15N is the key signal. Can. J. Microbiol. 55, 84–94 (2009).

  116. 116.

    Hofmeister, J., Hosek, J., Buzek, F. & Rolecek, J. Foliar N concentration and δ15N signature reflect the herb layer species diversity and composition in oak-dominated forests. Appl. Veg. Sci. 15, 318–328 (2012).

  117. 117.

    Hofmockel, K. S. et al. Sources of increased N uptake in forest trees growing under elevated CO2: results of a large-scale 15N study. Glob. Change Biol. 17, 3338–3350 (2011).

  118. 118.

    Hogberg, P. et al. Recovery of ectomycorrhiza after ‘nitrogen saturation’ of a conifer forest. New Phytol. 189, 515–525 (2011).

  119. 119.

    Hogberg, P. & Alexander, I. J. Roles of root symbioses in African woodland and forest: evidence from 15N abundance and foliar analysis. J. Ecol. 83, 217–224 (1995).

  120. 120.

    Hoogmoed, M., Cunningham, S. C., Baker, P., Beringer, J. & Cavagnaro, T. R. N-fixing trees in restoration plantings: effects on nitrogen supply and soil microbial communities. Soil Biol. Biochem. 77, 203–212 (2014).

  121. 121.

    Houle, D., Moore, J. D., Ouimet, R. & Marty, C. Tree species partition N uptake by soil depth in boreal forests. Ecology 95, 1127–1133 (2014).

  122. 122.

    Hudson, J. M. G., Henry, G. H. R. & Cornwell, W. K. Taller and larger: shifts in Arctic tundra leaf traits after 16 years of experimental warming. Glob. Change Biol. 17, 1013–1021 (2011).

  123. 123.

    Hyodo, F., Kusaka, S., Wardle, D. A. & Nilsson, M.-C. Changes in stable nitrogen and carbon isotope ratios of plants and soil across a boreal forest fire chronosequence. Plant Soil 364, 315–323 (2013).

  124. 124.

    Ingram, L. J. & Adams, M. A. Does season and grazing influence the δ13C and δ15N of C4 native grasses in semi-arid rangelands of the Pilbara region of NW Australia? Agric. Ecosyst. Environ. 236, 277–284 (2017).

  125. 125.

    Jiang, C. & Zhang, X. N isotopes and N cycle in the TieShanPing subtropical forest ecosystem, southwestern China. Environ. Monit. Assess. 154, 301–308 (2009).

  126. 126.

    Kahmen, A., Wanek, W. & Buchmann, N. Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia 156, 861–870 (2008).

  127. 127.

    Kang, H. et al. Variation in foliar δ15N among oriental oak (Quercus variabilis) stands over eastern China: patterns and interactions. J. Geochem. Explor. 110, 8–14 (2011).

  128. 128.

    Kearsley, E. et al. Functional community structure of African monodominant Gilbertiodendron dewevrei forest influenced by local environmental filtering. Ecol. Evol. 7, 295–304 (2017).

  129. 129.

    Kenzo, T., Tanaka-Oda, A., Mastuura, Y. & Hinzman, L. D. Morphological and physicochemical traits of leaves of different life-forms of various broadleaf woody plants in interior Alaska. Can. J. For. Res. 46, 1475–1482 (2016).

  130. 130.

    Kleinebecker, T. et al. Evidence from the real world: 15N natural abundances reveal enhanced nitrogen use at high plant diversity in Central European grasslands. J. Ecol. 102, 456–465 (2014).

  131. 131.

    Klopatek, J. M., Barry, M. J. & Johnson, D. W. Potential canopy interception of nitrogen in the Pacific Northwest, USA. For. Ecol. Manage. 234, 344–354 (2006).

  132. 132.

    Koba, K. et al. δ15N of soil N and plants in a N-saturated, subtropical forest of southern China. Rapid Commun. Mass Spectrom. 24, 2499–2506 (2010).

  133. 133.

    Koch, P. L. & Fox, L. R. Browsing impacts on the stable isotope composition of chaparral plants. Ecosphere 8, e01686 (2017).

  134. 134.

    Korner, C., Leuzinger, S., Riedl, S., Siegwolf, R. T. & Streule, L. Carbon and nitrogen stable isotope signals for an entire alpine flora, based on herbarium samples. Alp. Bot. 126, 153–166 (2016).

  135. 135.

    Kranabetter, J. & Meeds, J. Tree ring δ15N as validation of space-for-time substitution in disturbance studies of forest nitrogen status. Biogeochemistry 134, 201–215 (2017).

  136. 136.

    Kranabetter, J. M., Dube, S. & Lilles, E. An investigation into the contrasting growth response of lodgepole pine and white spruce to harvest-related soil disturbance. Can. J. For. Res. 47, 340–348 (2016).

  137. 137.

    Kranabetter, J. M. & MacKenzie, W. H. Contrasts among mycorrhizal plant guilds in foliar nitrogen concentration and δ15N along productivity gradients of a boreal forest. Ecosystems 13, 108–117 (2010).

  138. 138.

    Kuang, Y. et al. Nitrogen deposition influences nitrogen isotope composition in soil and needles of Pinus massoniana forests along an urban-rural gradient in the Pearl River Delta of south China. J. Soils Sediments 11, 589–595 (2011).

  139. 139.

    Ladd, B., Pepper, D. A. & Bonser, S. P. Competition intensity at local versus regional spatial scales. Plant Biol. 12, 772–779 (2010).

  140. 140.

    Laiolo, P., Carlos Illera, J., Melendez, L., Segura, A. & Ramon Obeso, J. Abiotic, biotic, and evolutionary control of the distribution of C and N isotopes in food webs. Am. Nat. 185, 169–182 (2015).

  141. 141.

    Laughlin, D. C., Fule, P. Z., Huffman, D. W., Crouse, J. & Laliberte, E. Climatic constraints on trait‐based forest assembly. J. Ecol. 99, 1489–1499 (2011).

  142. 142.

    LeDuc, S. D., Rothstein, D. E., Yermakov, Z. & Spaulding, S. E. Jack pine foliar δ15N indicates shifts in plant nitrogen acquisition after severe wildfire and through forest stand development. Plant Soil 373, 955–965 (2013).

  143. 143.

    Li, Y., Xue, J., Clinton, P. W. & Dungey, H. S. Genetic parameters and clone by environment interactions for growth and foliar nutrient concentrations in radiata pine on 14 widely diverse New Zealand sites. Tree Genet. Genomes 11, 10 (2015).

  144. 144.

    Liu, X., Wang, G., Li, J. & Wang, Q. Nitrogen isotope composition characteristics of modern plants and their variations along an altitudinal gradient in Dongling Mountain in Beijing. Sci. China Ser. D Earth Sci. 53, 128–140 (2010).

  145. 145.

    Liu, X. et al. Foliar δ13C and δ15N values of C3 plants in the Ethiopia Rift Valley and their environmental controls. Chin. Sci. Bull. 52, 1265–1273 (2007).

  146. 146.

    Ma, L. et al. Ecophysiological and foliar nitrogen concentration responses of understorey Acacia spp. and Eucalyptus sp. to prescribed burning. Environ. Sci. Pollut. R. 22, 10254–10262 (2015).

  147. 147.

    Makarov, M. I. et al. Determinants of 15N natural abundance in leaves of co-occurring plant species and types within an alpine lichen heath in the Northern Caucasus. Arct. Antarct. Alp. Res. 46, 581–590 (2014).

  148. 148.

    Maranon-Jimenez, S., Castro, J., Ignacio Querejeta, J., Fernandez-Ondono, E. & Allen, C. D. Post-fire wood management alters water stress, growth, and performance of pine regeneration in a Mediterranean ecosystem. For. Ecol. Manage. 308, 231–239 (2013).

  149. 149.

    Matsushima, M., Choi, W.-J. & Chang, S. X. White spruce foliar δ13C and δ15N indicate changed soil N availability by understory removal and N fertilization in a 13-year-old boreal plantation. Plant Soil 361, 375–384 (2012).

  150. 150.

    Mayor, J. R., Schuur, E. A. G., Mack, M. C., Hollingsworth, T. N. & Baath, E. Nitrogen isotope patterns in Alaskan black spruce reflect organic nitrogen sources and the activity of ectomycorrhizal fungi. Ecosystems 15, 819–831 (2012).

  151. 151.

    Mayor, J. R., Wright, S. J., Schuur, E. A. G., Brooks, M. E. & Turner, B. L. Stable nitrogen isotope patterns of trees and soils altered by long-term nitrogen and phosphorus addition to a lowland tropical rainforest. Biogeochemistry 119, 293–306 (2014).

  152. 152.

    McGlynn, T. P. et al. Spurious and functional correlates of the isotopic composition of a generalist across a tropical rainforest landscape. BMC Ecol. 9, 23–23 (2009).

  153. 153.

    McLauchlan, K. K., Craine, J. M., Nippert, J. B. & Ocheltree, T. W. Lack of eutrophication in a tallgrass prairie ecosystem over 27 years. Ecology 95, 1225–1235 (2014).

  154. 154.

    Medina, E., Cuevas, E. & Lugo, A. E. Substrate chemistry and rainfall regime regulate elemental composition of tree leaves in karst forests. Forests 8, 182 (2017).

  155. 155.

    Menge, D. N. L., Baisden, W. T., Richardson, S. J., Peltzer, D. A. & Barbour, M. M. Declining foliar and litter δ15N diverge from soil, epiphyte and input δ15N along a 120,000 yr temperate rainforest chronosequence. New Phytol. 190, 941–952 (2011).

  156. 156.

    Menyailo, O. V., Makarov, M. I. & Cheng, C. H. Isotopic composition of carbon (δ13C) and nitrogen (δ15N) in foliage and soil as a function of tree species. Dokl. Biol. Sci. 456, 209–211 (2014).

  157. 157.

    Mercado, A. R. Jr, Van Noordwijk, M. & Cadisch, G. Positive nitrogen balance of Acacia mangium woodlots as fallows in the Philippines based on 15N natural abundance data of N2 fixation. Agroforest. Syst. 81, 221–233 (2011).

  158. 158.

    Meyer, W. M. III & Yeung, N. W. Trophic relationships among terrestrial molluscs in a Hawaiian rain forest: analysis of carbon and nitrogen isotopes. J. Trop. Ecol. 27, 441–445 (2011).

  159. 159.

    Morford, S. L., Houlton, B. Z. & Dahlgren, R. A. Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock. Nature 477, 78–81 (2011).

  160. 160.

    Msanne, J. et al. Ecophysiological responses of native invasive woody Juniperus virginiana L. to resource availability and stand characteristics in the semiarid grasslands of the Nebraska Sandhills. Photosynthetica 55, 219–230 (2017).

  161. 161.

    Murphy, B. P. & Bowman, D. M. J. S. The carbon and nitrogen isotope composition of Australian grasses in relation to climate. Funct. Ecol. 23, 1040–1049 (2009).

  162. 162.

    Nielsen, J. A., Frew, R. D., Whigham, P. A., Callaway, R. M. & Dickinson, K. J. M. Thyme travels: 15N isoscapes of Thymus vulgaris L. invasion in lightly grazed pastoral communities. Austral Ecol. 41, 28–39 (2016).

  163. 163.

    Ogaya, R. & Penuelas, J. Changes in leaf δ13C and δ15N for three Mediterranean tree species in relation to soil water availability. Acta Oecol. 34, 331–338 (2008).

  164. 164.

    Pasquini, S. C. & Santiago, L. S. Nutrients limit photosynthesis in seedlings of a lowland tropical forest tree species. Oecologia 168, 311–319 (2012).

  165. 165.

    Pellegrini, A. F. A., Hoffmann, W. A. & Franco, A. C. Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil. Ecology 95, 342–352 (2014).

  166. 166.

    Perakis, S. S. & Kellogg, C. H. Imprint of oaks on nitrogen availability and δ15N in California grassland-savanna: a case of enhanced N inputs? Plant Ecol. 191, 209–220 (2007).

  167. 167.

    Perakis, S. S., Tepley, A. J. & Compton, J. E. Disturbance and topography shape nitrogen availability and δ15N over long-term forest succession. Ecosystems 18, 573–588 (2015).

  168. 168.

    Perakis, S. S., Sinkhorn, E. R. & Compton, J. E. δ15N constraints on long-term nitrogen balances in temperate forests. Oecologia 167, 793–807 (2011).

  169. 169.

    Peri, P. L. et al. Carbon (δ13C) and nitrogen (δ15N) stable isotope composition in plant and soil in Southern Patagonia’s native forests. Glob. Change Biol. 18, 311–321 (2012).

  170. 170.

    Pillar, V. D. & Sosinski, E. E. Jr An improved method for searching plant functional types by numerical analysis. J. Veg. Sci. 14, 323–332 (2003).

  171. 171.

    Pons, T. L., Perreijn, K., van Kessel, C. & Werger, M. J. A. Symbiotic nitrogen fixation in a tropical rainforest: 15N natural abundance measurements supported by experimental isotopic enrichment. New Phytol. 173, 154–167 (2007).

  172. 172.

    Powers, J. S. & Tiffin, P. Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approaches. Funct. Ecol. 24, 927–936 (2010).

  173. 173.

    Priyadarshini, K. V. R. et al. Overlap in nitrogen sources and redistribution of nitrogen between trees and grasses in a semi-arid savanna. Oecologia 174, 1107–1116 (2014).

  174. 174.

    Ren, H. et al. Exacerbated nitrogen limitation ends transient stimulation of grassland productivity by increased precipitation. Ecol. Monogr. 87, 457–469 (2017).

  175. 175.

    Roa-Fuentes, L. L., Templer, P. H. & Campo, J. Effects of precipitation regime and soil nitrogen on leaf traits in seasonally dry tropical forests of the Yucatan Peninsula, Mexico. Oecologia 179, 585–597 (2015).

  176. 176.

    Roberts, P., Blumenthal, S. A., Dittus, W., Wedage, O. & Lee-Thorp, J. A. Stable carbon, oxygen, and nitrogen, isotope analysis of plants from a South Asian tropical forest: implications for primatology. Am. J. Primatol. 79, e22656 (2017).

  177. 177.

    Roggy, J. C. et al. Complementary N uptake strategies between tree species in tropical rainforest. Int. Sch. Res. Notices 2014, 427194 (2014).

  178. 178.

    Roggy, J. C., Prevost, M. F., Garbaye, J. & Domenach, A. M. Nitrogen cycling in the tropical rain forest of French Guiana: comparison of two sites with contrasting soil types using δ15N. J. Trop. Ecol. 15, 1–22 (1999).

  179. 179.

    Rosado, B. H. P. & de Mattos, E. A. Interspecific variation of functional traits in a CAM-tree dominated sandy coastal plain. J. Veg. Sci. 21, 43–54 (2010).

  180. 180.

    Ruiz-Navarro, A., Barbera, G. G., Albaladejo, J. & Querejeta, J. I. Plant δ15N reflects the high landscape-scale heterogeneity of soil fertility and vegetation productivity in a Mediterranean semiarid ecosystems. New Phytol. 212, 1030–1043 (2016).

  181. 181.

    Salmon, V. G. et al. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Glob. Change Biol. 22, 1927–1941 (2016).

  182. 182.

    Santiago, L., Silvera, K., Andrade, J. & Dawson, T. Functional strategies of tropical dry forest plants in relation to growth form and isotopic composition. Environ. Res. Lett. 12, 115006 (2017).

  183. 183.

    Schimann, H. et al. Differing nitrogen use strategies of two tropical rainforest late successional tree species in French Guiana: evidence from 15N natural abundance and microbial activities. Soil Biol. Biochem. 40, 487–494 (2008).

  184. 184.

    Scott, E. E., Perakis, S. S. & Hibbs, D. E. δ15N patterns of Douglas-fir and red alder riparian forests in the Oregon coast range. Forest Sci. 54, 140–147 (2008).

  185. 185.

    Selmants, P. C. & Hart, S. C. Substrate age and tree islands influence carbon and nitrogen dynamics across a retrogressive semiarid chronosequence. Glob. Biogeochem. Cycles 22, GB1021 (2008).

  186. 186.

    Serbin, S. P., Singh, A., McNeil, B. E., Kingdon, C. C. & Townsend, P. A. Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species. Ecol. Appl. 24, 1651–1669 (2014).

  187. 187.

    Shen, J. et al. Relationships of leaf nitrogen concentration and δ15N value in Humulus scandens with atmospheric NH3 and NO2. J. China Agricult. Univ. 15, 84–88 (2010).

  188. 188.

    Silva, L. C. R., Gomez-Guerrero, A., Doane, T. A. & Horwath, W. R. Isotopic and nutritional evidence for species- and site-specific responses to N deposition and elevated CO2 in temperate forests. J. Geophys. Res. Biogeosci. 120, 1110–1123 (2015).

  189. 189.

    Smith, K. R., Mathias, J. M., McNeil, B. E., Peterjohn, W. T. & Thomas, R. B. Site-level importance of broadleaf deciduous trees outweighs the legacy of high nitrogen (N) deposition on ecosystem N status of Central Appalachian red spruce forests. Plant Soil 408, 343–356 (2016).

  190. 190.

    Song, M., Djagbletey, G., Nkrumah, E. E. & Huang, M. Patterns in leaf traits of leguminous and non-leguminous dominant trees along a rainfall gradient in Ghana. J. Plant Ecol. 9, 69–76 (2016).

  191. 191.

    Soper, F. M., Boutton, T. W. & Sparks, J. P. Investigating patterns of symbiotic nitrogen fixation during vegetation change from grassland to woodland using fine scale δ15N measurements. Plant Cell Environ. 38, 89–100 (2015).

  192. 192.

    Soper, F. M. et al. Natural abundance (δ15N) indicates shifts in nitrogen relations of woody taxa along a savanna-woodland continental rainfall gradient. Oecologia 178, 297–308 (2015).

  193. 193.

    Stephan, K., Kavanagh, K. L. & Koyama, A. Comparing the influence of wildfire and prescribed burns on watershed nitrogen biogeochemistry using 15N natural abundance in terrestrial and aquatic ecosystem components. PloS ONE 10, e0119560 (2015).

  194. 194.

    Szpak, P., White, C. D., Longstaffe, F. J., Millaire, J.-F. & Vasquez Sanchez, V. F. Carbon and nitrogen isotopic survey of northern Peruvian plants: baselines for paleodietary and paleoecological studies. PloS ONE 8, e53763 (2013).

  195. 195.

    Tanaka-Oda, A. et al. Variation in leaf and soil δ15N in diverse tree species in a lowland dipterocarp rainforest, Malaysia. Trees 30, 509–522 (2016).

  196. 196.

    Tanaka-Oda, A., Kenzo, T., Toriyama, J. & Matsuura, Y. Variability in the growth rates and foliage δ15N values of black spruce trees across a slope gradient in the Alaskan Interior. Can. J. For. Res. 46, 1483–1490 (2016).

  197. 197.

    Tang, B., Yin, C., Yang, H., Sun, Y. & Liu, Q. The coupling effects of water deficit and nitrogen supply on photosynthesis, WUE, and stable isotope composition in Picea asperata. Acta Physiol. Plant. 39, 148 (2017).

  198. 198.

    Templer, P. H. et al. Fog as a source of nitrogen for redwood trees: evidence from fluxes and stable isotopes. J. Ecol. 103, 1397–1407 (2015).

  199. 199.

    Thorpe, A. S., Perakis, S., Catricala, C. & Kaye, T. N. Nutrient limitation of native and invasive N2-fixing plants in northwest prairies. PLoS ONE 8, e84593 (2013).

  200. 200.

    Van der Colff, D., Dreyer, L. L., Valentine, A. & Roets, F. Comparison of nutrient cycling abilities between the invasive Acacia mearnsii and the native Virgilia divaricata trees growing sympatrically in forest margins in South Africa. S. Afr. J. Bot. 111, 358–364 (2017).

  201. 201.

    Viani, R. A. G., Rodrigues, R. R., Dawson, T. E. & Oliveira, R. S. Functional differences between woodland savannas and seasonally dry forests from south-eastern Brazil: evidence from 15N natural abundance studies. Austral Ecol. 36, 974–982 (2011).

  202. 202.

    Wang, A. et al. Variations in nitrogen-15 natural abundance of plant and soil systems in four remote tropical rainforests, southern China. Oecologia 174, 567–580 (2014).

  203. 203.

    Wang, C. et al. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nat. Commun. 5, 4799 (2014).

  204. 204.

    Wang, L. & Macko, S. A. Constrained preferences in nitrogen uptake across plant species and environments. Plant Cell Environ. 34, 525–534 (2011).

  205. 205.

    Wang, L., D’Odorico, P., O’Halloran, L. R., Caylor, K. & Macko, S. Combined effects of soil moisture and nitrogen availability variations on grass productivity in African savannas. Plant Soil 328, 95–108 (2010).

  206. 206.

    Wang, L., D’Odorico, P., Ries, L. & Macko, S. A. Patterns and implications of plant-soil δ13C and δ15N values in African savanna ecosystems. Quat. Res. 73, 77–83 (2010).

  207. 207.

    Wang, L., Okin, G. S., D’Odorico, P., Caylor, K. K. & Macko, S. A. Ecosystem-scale spatial heterogeneity of stable isotopes of soil nitrogen in African savannas. Landsc. Ecol. 28, 685–698 (2013).

  208. 208.

    Wang, L., Okin, G. S., Wang, J., Epstein, H. & Macko, S. A. Predicting leaf and canopy 15N compositions from reflectance spectra. Geophys. Res. Lett. 34, L02401 (2007).

  209. 209.

    Wang, L., Shaner, P.-J. L. & Macko, S. Foliar δ15N patterns along successional gradients at plant community and species levels. Geophys. Res. Lett. 34, L16403 (2007).

  210. 210.

    Watkins, J. E. Jr, Rundel, P. W. & Cardelus, C. L. The influence of life form on carbon and nitrogen relationships in tropical rainforest ferns. Oecologia 153, 225–232 (2007).

  211. 211.

    Werner, C. & Máguas, C. Carbon isotope discrimination as a tracer of functional traits in a Mediterranean macchia plant community. Funct. Plant Biol. 37, 467–477 (2010).

  212. 212.

    Williams, M., Shimabokuro, Y. E. & Rastetter, E. B. LBA-ECO CD-09 Soil and Vegetation Characteristics, Tapajos National Forest, Brazil (Oak Ridge National Laboratory Distributed Active Archive Center, 2012).

  213. 213.

    Woodcock, P. et al. Assessing trophic position from nitrogen isotope ratios: effective calibration against spatially varying baselines. Naturwissenschaften 99, 275–283 (2012).

  214. 214.

    Wu, T. & Huang, J. Effects of grazing on the δ15N values of foliage and soil in a typical steppe ecosystem in Inner Mongolia, China. J. Plant Ecol. (Chinese Version) 34, 160–169 (2010).

  215. 215.

    Xiao, L., Yang, H., Sun, B., Li, X. & Guo, J. Stable isotope compositions of recent and fossil sun/shade leaves and implications for palaeoenvironmental reconstruction. Rev. Palaeobot. Palynol. 190, 75–84 (2013).

  216. 216.

    Yang, Y. et al. Vegetation and soil 15N natural abundance in alpine grasslands on the Tibetan Plateau: patterns and implications. Ecosystems 16, 1013–1024 (2013).

  217. 217.

    Yang, Y., Siegwolf, R. T. W. & Koerner, C. Species specific and environment induced variation of δ13C and δ15N in alpine plants. Front. Plant Sci. 6, 423 (2015).

  218. 218.

    Yao, F. Y., Wang, G. A., Liu, X. J. & Song, L. Assessment of effects of the rising atmospheric nitrogen deposition on nitrogen uptake and long-term water-use efficiency of plants using nitrogen and carbon stable isotopes. Rapid Commun. Mass Spectrom. 25, 1827–1836 (2011).

  219. 219.

    Ye, L. et al. Contrasting impacts of grass species on nitrogen cycling in a grazed Sudanian savanna. Acta Oecol. 63, 8–15 (2015).

  220. 220.

    Zhang, H.-Y. et al. Impacts of leguminous shrub encroachment on neighboring grasses include transfer of fixed nitrogen. Oecologia 180, 1213–1222 (2016).

  221. 221.

    Zhao, L. et al. The effects of short-term rainfall variability on leaf isotopic traits of desert plants in sand-binding ecosystems. Ecol. Eng. 60, 116–125 (2013).

  222. 222.

    Zmudczynska-Skarbek, K., Barcikowski, M., Zwolicki, A., Iliszko, L. & Stempniewicz, L. Variability of polar scurvygrass Cochlearia groenlandica individual traits along a seabird influenced gradient across Spitsbergen tundra. Polar Biol. 36, 1659–1669 (2013).

  223. 223.

    Sparks, J. A. & Crowley, B. E. Where did people forage in prehistoric Trinidad? Testing the utility of isotopic tools for tracking terrestrial resource use. J. Archaeol. Sci. Rep. 19, 968–978 (2018).

  224. 224.

    Mosher, S. Carbon Isotope Discrimination and Nitrogen Isotope Values Indicate that Increased Relative Humidity from Fog Decreases Plant Water Use Efficiency in a Subtropical Montane Cloud Forest. MSc thesis, Univ. Cincinnati (2015).

Download references

Acknowledgements

Funding for this research was in part provided by the BRIDGE Project (ANR-2006 Biodiversity Call) and from an ‘Investissement d’Avenir’ grant managed by the Agence Nationale de la Recherche (CEBA, grant no. ANR-10-LABX-0025) (J.C.R.); by the European Research Council through the Advanced Grant Project TREEPEACE (grant no. FP7-339728) and the Cluster of Excellence COTE (grant no. ANR-10-LABX-45) (S.D.); by NASA project no. NNX12AK56G and EU MSCA individual fellowship (project no. 705432) (R.G.); by COILEX (grant no. CGL2008-01671), ECOLPIN (grant no. AGL2011-24296) and EU MSCA individual fellowship (project no. 750252) (S.M.J.); and by the Russian Science Foundation (grant no. 16-14-10208) (M.M.). No funding was provided to J.M.C. or A.J.E. in support of this research.

Author information

Affiliations

  1. Jonah Ventures, Boulder, CO, USA

    • Joseph M. Craine
  2. Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, USA

    • Andrew J. Elmore
    •  & David M. Nelson
  3. Department of Earth Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA

    • Lixin Wang
  4. Facultad de Ciencias Exactas y Naturales (FCEN-UNCuyo), Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA-CONICET), Mendoza, Argentina

    • Julieta Aranibar
  5. MB Isotope Bioscience Laboratory – ISOFYS, Ghent University, Ghent, Belgium

    • Marijn Bauters
    •  & Pascal Boeckx
  6. CAVElab, Computational and Applied Vegetation Ecology, Ghent University, Ghent, Belgium

    • Marijn Bauters
  7. Department of Geology , University of Cincinnati, Cincinnati, OH, USA

    • Brooke E. Crowley
    •  & Stella G. Mosher
  8. Department of Anthropology, University of Cincinnati, OH, USA

    • Brooke E. Crowley
  9. Swiss Federal Institute for Forest, Snow and Landscape Research – WSL Forest soils and Biogeochemistry, Birmensdorf, Switzerland

    • Melissa A. Dawes
  10. BIOGECO, INRA University of Bordeaux, Pessac, France

    • Sylvain Delzon
  11. Centro de Investigación en Ecosistemas de la Patagonia, Coyhaique, Chile

    • Alex Fajardo
  12. CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China

    • Yunting Fang
  13. Research Institute for Humanity and Nature, Kyoto, Japan

    • Lei Fujiyoshi
  14. NERC Centre for Ecology and Hydrology, Penicuik, UK

    • Alan Gray
  15. Centre for Ecological Research and Forestry Applications, Barcelona, Spain

    • Rossella Guerrieri
  16. Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden

    • Michael J. Gundale
  17. Department of Science and Primary Industries, Ara Institute of Canterbury, Christchurch, New Zealand

    • David J. Hawke
  18. Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria

    • Peter Hietz
  19. Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

    • Mathieu Jonard
  20. Computational and Applied Vegetation Ecology lab, Department of Environment, Ghent University, Ghent, Belgium

    • Elizabeth Kearsley
  21. Department of Plant Ecology, Forestry and Forest Products Research Institute, Tsukuba, Japan

    • Tanaka Kenzo
  22. Soil Science Department, Moscow M.V. Lomonosov State University, Moscow, Russia

    • Mikhail Makarov
  23. Department of Ecology, Faculty of Sciences, University of Granada, Granada, Spain

    • Sara Marañón-Jiménez
  24. CREAF, Barcelona, Spain

    • Sara Marañón-Jiménez
  25. CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain

    • Sara Marañón-Jiménez
  26. Department of Biology, California State University Dominguez Hills, Carson, CA, USA

    • Terrence P. McGlynn
  27. Department of Entomology, Natural History Museum of Los Angeles County, Los Angeles, CA, USA

    • Terrence P. McGlynn
  28. Department of Geology and Geography, West Virginia University, Morgantown, WV, USA

    • Brenden E. McNeil
  29. Instituto Nacional de Tecnología Agropecuaria, CONICET Universidad Nacional de la Patagonia Austral, Río Gallegos, Argentina

    • Pablo L. Peri
  30. INRA, UMR Ecologie des Forêts de Guyane, Campus Agronomique, Kourou, Guyane Française, France

    • Jean Christophe Roggy
  31. Department of Biology, Boston University, Boston, MA, USA

    • Rebecca Sanders-DeMott
    •  & Pamela H. Templer
  32. Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA

    • Rebecca Sanders-DeMott
    •  & Xingliang Xu
  33. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

    • Minghua Song
  34. Department of Anthropology, Trent University, Peterborough, Ontario, Canada

    • Paul Szpak
  35. South African National Biodiversity Institute, Cape Town, South Africa

    • Dewidine Van der Colff
  36. Ecosystem Physiology, University of Freiburg, Freiburg, Germany

    • Christiane Werner
  37. Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China

    • Yang Yang
  38. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

    • Guirui Yu
  39. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China

    • Guirui Yu
  40. Faculty of Biology, Department of Vertebrate Ecology and Zoology, University of Gdańsk, Gdańsk, Poland

    • Katarzyna Zmudczyńska-Skarbek

Authors

  1. Search for Joseph M. Craine in:

  2. Search for Andrew J. Elmore in:

  3. Search for Lixin Wang in:

  4. Search for Julieta Aranibar in:

  5. Search for Marijn Bauters in:

  6. Search for Pascal Boeckx in:

  7. Search for Brooke E. Crowley in:

  8. Search for Melissa A. Dawes in:

  9. Search for Sylvain Delzon in:

  10. Search for Alex Fajardo in:

  11. Search for Yunting Fang in:

  12. Search for Lei Fujiyoshi in:

  13. Search for Alan Gray in:

  14. Search for Rossella Guerrieri in:

  15. Search for Michael J. Gundale in:

  16. Search for David J. Hawke in:

  17. Search for Peter Hietz in:

  18. Search for Mathieu Jonard in:

  19. Search for Elizabeth Kearsley in:

  20. Search for Tanaka Kenzo in:

  21. Search for Mikhail Makarov in:

  22. Search for Sara Marañón-Jiménez in:

  23. Search for Terrence P. McGlynn in:

  24. Search for Brenden E. McNeil in:

  25. Search for Stella G. Mosher in:

  26. Search for David M. Nelson in:

  27. Search for Pablo L. Peri in:

  28. Search for Jean Christophe Roggy in:

  29. Search for Rebecca Sanders-DeMott in:

  30. Search for Minghua Song in:

  31. Search for Paul Szpak in:

  32. Search for Pamela H. Templer in:

  33. Search for Dewidine Van der Colff in:

  34. Search for Christiane Werner in:

  35. Search for Xingliang Xu in:

  36. Search for Yang Yang in:

  37. Search for Guirui Yu in:

  38. Search for Katarzyna Zmudczyńska-Skarbek in:

Contributions

J.M.C. and A.J.E. conceived of the research, conducted analyses, generated figures and prepared the original draft. All authors contributed data and provided comments on manuscripts.

Competing interests

Although J.M.C. is an owner of Jonah Ventures, a for-profit DNA sequencing company, the authors declare no competing interests in the publication of this research.

Corresponding author

Correspondence to Joseph M. Craine.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–10 and Supplementary Tables 1–4

  2. Reporting Summary

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41559-018-0694-0