Abstract
Ecology and evolution unfold in spatially structured communities, where dispersal links dynamics across scales. Because dispersal is multicausal, identifying general drivers remains challenging. In a coordinated distributed experiment spanning organisms from protozoa to vertebrates, we tested whether two fundamental determinants of local dynamics, top-down and bottom-up control, generally explain active dispersal. We show that both factors consistently increased emigration rates and use metacommunity modelling to highlight consequences on local and regional dynamics.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Population density, bottom-up and top-down control as an interactive triplet to trigger dispersal
Scientific Reports Open Access 02 April 2022
-
Body size dependent dispersal influences stability in heterogeneous metacommunities
Scientific Reports Open Access 31 August 2021
-
Landscape heterogeneity buffers biodiversity of simulated meta-food-webs under global change through rescue and drainage effects
Nature Communications Open Access 05 August 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout


Data availability
The data set and computer code generated and analysed during the current study are available in the Zenodo repository, https://doi.org/10.5281/zenodo.1344579.
References
Bonte, D. & Dahirel, M. Oikos 126, 472–479 (2017).
Hanski, I. & Gaggiotti, O. E. (eds) Ecology, Genetics and Evolution of Metapopulations (Academic Press, Amsterdam, 2004).
Vellend, M. Q. Rev. Biol. 85, 183–206 (2010).
Morgan, A. D., Gandon, S. & Buckling, A. Nature 437, 253–256 (2005).
Urban, M. C. et al. Science 353, aad8466 (2016).
Thompson, P. L. & Gonzalez, A. Nat. Ecol. Evol. 1, 0162 (2017).
Berg, M. P. et al. Glob. Change Biol. 16, 587–598 (2010).
Clobert, J., Le Galliard, J. F., Cote, J., Meylan, S. & Massot, M. Ecol. Lett. 12, 197–209 (2009).
Matthysen, E. in Dispersal Ecology and Evolution (eds Clobert, J. et al.) 3–12 (Oxford Univ. Press, Oxford, 2012).
Legrand, D. et al. Ecography 38, 822–831 (2015).
Imbert, E. & Ronce, O. Oikos 93, 126–134 (2001).
Aguillon, S. M. & Duckworth, R. A. Behav. Ecol. Sociobiol. 69, 625–633 (2015).
Matthysen, E. Ecography 28, 403–416 (2005).
Bitume, E. V. et al. Ecol. Lett. 16, 430–437 (2013).
Bestion, E., Teyssier, A., Aubret, F., Clobert, J. & Cote, J. Proc. Biol. Sci. 281, 20140701 (2014).
Fronhofer, E. A., Klecka, J., Melián, C. & Altermatt, F. Ecol. Lett. 18, 954–963 (2015).
Travis, J. M. J., Murrell, D. J. & Dytham, C. Proc. R. Soc. B 266, 1837–1842 (1999).
Poethke, H. J. & Hovestadt, T. Proc. Biol. Sci. 269, 637–645 (2002).
Poethke, H. J., Weisser, W. W. & Hovestadt, T. Am. Nat. 175, 577–586 (2010).
Amarasekare, P. Am. Nat. 170, 819–831 (2007).
Amarasekare, P. J. Anim. Ecol. 79, 282–293 (2010).
Bowler, D. E. & Benton, T. G. Biol. Rev. Camb. Philos. Soc. 80, 205–225 (2005).
Fraser, L. H. et al. Front. Ecol. Environ. 11, 147–155 (2013).
Borer, E. T. et al. Methods Ecol. Evol. 5, 65–73 (2014).
Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M. Dispersal Ecology and Evolution (Oxford Univ. Press, Oxford, 2012).
Dell, A. I., Pawar, S. & Savage, V. M. J. Anim. Ecol. 83, 70–84 (2014).
Stevens, V. M. et al. Ecol. Lett. 17, 1039–1052 (2014).
Wang, S. & Loreau, M. Ecol. Lett. 17, 891–901 (2014).
Petchey, O. L. et al. Ecol. Lett. 18, 597–611 (2015).
Beckage, B., Gross, L. J. & Kauffman, S. Ecosphere 2, 1–12 (2011).
Jacob, S. et al. Nat. Ecol. Evol. 1, 1407–1410 (2017).
Travis, J. M. J. et al. Methods Ecol. Evol. 3, 628–641 (2012).
Altermatt, F. et al. Methods Ecol. Evol 6, 218–231 (2015).
Legrand, D. et al. Nat. Methods 9, 828–833 (2012).
Ronce, O. Annu. Rev. Ecol. Evol. Syst. 38, 231–253 (2007).
Pennekamp, F., Schtickzelle, N. & Petchey, O. L. Ecol. Evol. 5, 2584–2595 (2015).
Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. Behav. Ecol. Sociobiol. 65, 23–35 (2011).
McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (CRC Press, Boca Raton, 2016).
Metz, J. A. & Gyllenberg, M. Proc. Biol. Sci. 268, 499–508 (2001).
Acknowledgements
F.A. thanks the Swiss National Science Foundation (grant no. PP00P3_150698). D.B. and S.M. thank the Fonds Wetenschappelijk Onderzoek (grant no. 11T7518N LV). S.J., E.L. and N.S. thank Université Catholique de Louvain (UCL) and Fonds de la Recherche Scientifique (F.R.S.)-FNRS. S.J. acknowledges a ‘MOVE-IN Louvain’ postdoctoral position at UCL. N.S. is Research Associate of F.R.S.-FNRS. D.L. and M.D. thank the Fyssen Foundation for funding. J.D.R. thanks the Research Foundation Flanders (FWO; grant no. FWO14/ASP/075). Fr.P. was financially supported by Swiss National Science Foundation grant no. 31003A_159498. J.C. was supported by an ANR-12-JSV7-0004-01, by the ERA-Net BiodivERsA, with the national funder Office national de l’eau et des milieux aquatiques (Onema), part of the 2012–2013 BiodivERsA call for research proposals and by the French Laboratory of Excellence project TULIP (ANR-10-LABX-41). This work was supported by an Investissements d’avenir programme from the Agence Nationale de la recherche (no. ANR-11-INBS-0001AnaEE-Services). D.L. and J.C. thank A. Trochet and O. Calvez for their valuable input in the experiments involving newts, toads and snakes. D.L. and J.C. thank L. Raymond for providing the butterflies. M.D., A.A. and L.M. are especially grateful to C. Van Gheluwe for running the experiments and to Maryvonne Charrier for providing the D. reticulatum slugs. We thank M. Thomas for valuable input on the statistical analyses. This is publication ISEM 2018-172 of the Institut des Sciences de l'Evolution - Montpellier.
Author information
Authors and Affiliations
Contributions
All authors commented on the drafts and have read and approved the final manuscript. More details on individual contributions can be found in the Supplementary Information at the beginning of each specific Supplementary methods section. F.A., D.B., A.C., J.C., M.D., F.D.L., E.A.F., D.L., S.J., E.L., S.M., Fr.P. and N.S. designed the research. This research was designed during a meeting of the dispNet group (https://dispnet.github.io/) organized at UCL by N.S. and D.B. F.A., A.A., S.B., D.B., J.C., M.D., F.D.L., J.D.R., L.D.G., E.A.F., D.L., S.J., O.K., E.L., C.J.L., L.M., F.M., S.M., Fe.P., Fr.P., N.S., L.T., A.V. and L.W. performed the experiments. More information can be found in the Supplementary Information. J.C. and E.A.F. analysed the experimental data. E.A.F. designed and analysed the model and drafted the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Methods, Supplementary Figures 1–5, Supplementary Tables 1–14, Supplementary References
Rights and permissions
About this article
Cite this article
Fronhofer, E.A., Legrand, D., Altermatt, F. et al. Bottom-up and top-down control of dispersal across major organismal groups. Nat Ecol Evol 2, 1859–1863 (2018). https://doi.org/10.1038/s41559-018-0686-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41559-018-0686-0
This article is cited by
-
Population density, bottom-up and top-down control as an interactive triplet to trigger dispersal
Scientific Reports (2022)
-
Experimental evidence that host choice by parasites is age-dependent in a fish-monogenean system
Parasitology Research (2022)
-
Moving apart together: co-movement of a symbiont community and their ant host, and its importance for community assembly
Movement Ecology (2021)
-
Body size dependent dispersal influences stability in heterogeneous metacommunities
Scientific Reports (2021)
-
Landscape heterogeneity buffers biodiversity of simulated meta-food-webs under global change through rescue and drainage effects
Nature Communications (2021)