Brief Communication | Published:

Bottom-up and top-down control of dispersal across major organismal groups


Ecology and evolution unfold in spatially structured communities, where dispersal links dynamics across scales. Because dispersal is multicausal, identifying general drivers remains challenging. In a coordinated distributed experiment spanning organisms from protozoa to vertebrates, we tested whether two fundamental determinants of local dynamics, top-down and bottom-up control, generally explain active dispersal. We show that both factors consistently increased emigration rates and use metacommunity modelling to highlight consequences on local and regional dynamics.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data set and computer code generated and analysed during the current study are available in the Zenodo repository,

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Bonte, D. & Dahirel, M. Oikos 126, 472–479 (2017).

  2. 2.

    Hanski, I. & Gaggiotti, O. E. (eds) Ecology, Genetics and Evolution of Metapopulations (Academic Press, Amsterdam, 2004).

  3. 3.

    Vellend, M. Q. Rev. Biol. 85, 183–206 (2010).

  4. 4.

    Morgan, A. D., Gandon, S. & Buckling, A. Nature 437, 253–256 (2005).

  5. 5.

    Urban, M. C. et al. Science 353, aad8466 (2016).

  6. 6.

    Thompson, P. L. & Gonzalez, A. Nat. Ecol. Evol. 1, 0162 (2017).

  7. 7.

    Berg, M. P. et al. Glob. Change Biol. 16, 587–598 (2010).

  8. 8.

    Clobert, J., Le Galliard, J. F., Cote, J., Meylan, S. & Massot, M. Ecol. Lett. 12, 197–209 (2009).

  9. 9.

    Matthysen, E. in Dispersal Ecology and Evolution (eds Clobert, J. et al.) 3–12 (Oxford Univ. Press, Oxford, 2012).

  10. 10.

    Legrand, D. et al. Ecography 38, 822–831 (2015).

  11. 11.

    Imbert, E. & Ronce, O. Oikos 93, 126–134 (2001).

  12. 12.

    Aguillon, S. M. & Duckworth, R. A. Behav. Ecol. Sociobiol. 69, 625–633 (2015).

  13. 13.

    Matthysen, E. Ecography 28, 403–416 (2005).

  14. 14.

    Bitume, E. V. et al. Ecol. Lett. 16, 430–437 (2013).

  15. 15.

    Bestion, E., Teyssier, A., Aubret, F., Clobert, J. & Cote, J. Proc. Biol. Sci. 281, 20140701 (2014).

  16. 16.

    Fronhofer, E. A., Klecka, J., Melián, C. & Altermatt, F. Ecol. Lett. 18, 954–963 (2015).

  17. 17.

    Travis, J. M. J., Murrell, D. J. & Dytham, C. Proc. R. Soc. B 266, 1837–1842 (1999).

  18. 18.

    Poethke, H. J. & Hovestadt, T. Proc. Biol. Sci. 269, 637–645 (2002).

  19. 19.

    Poethke, H. J., Weisser, W. W. & Hovestadt, T. Am. Nat. 175, 577–586 (2010).

  20. 20.

    Amarasekare, P. Am. Nat. 170, 819–831 (2007).

  21. 21.

    Amarasekare, P. J. Anim. Ecol. 79, 282–293 (2010).

  22. 22.

    Bowler, D. E. & Benton, T. G. Biol. Rev. Camb. Philos. Soc. 80, 205–225 (2005).

  23. 23.

    Fraser, L. H. et al. Front. Ecol. Environ. 11, 147–155 (2013).

  24. 24.

    Borer, E. T. et al. Methods Ecol. Evol. 5, 65–73 (2014).

  25. 25.

    Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M. Dispersal Ecology and Evolution (Oxford Univ. Press, Oxford, 2012).

  26. 26.

    Dell, A. I., Pawar, S. & Savage, V. M. J. Anim. Ecol. 83, 70–84 (2014).

  27. 27.

    Stevens, V. M. et al. Ecol. Lett. 17, 1039–1052 (2014).

  28. 28.

    Wang, S. & Loreau, M. Ecol. Lett. 17, 891–901 (2014).

  29. 29.

    Petchey, O. L. et al. Ecol. Lett. 18, 597–611 (2015).

  30. 30.

    Beckage, B., Gross, L. J. & Kauffman, S. Ecosphere 2, 1–12 (2011).

  31. 31.

    Jacob, S. et al. Nat. Ecol. Evol. 1, 1407–1410 (2017).

  32. 32.

    Travis, J. M. J. et al. Methods Ecol. Evol. 3, 628–641 (2012).

  33. 33.

    Altermatt, F. et al. Methods Ecol. Evol 6, 218–231 (2015).

  34. 34.

    Legrand, D. et al. Nat. Methods 9, 828–833 (2012).

  35. 35.

    Ronce, O. Annu. Rev. Ecol. Evol. Syst. 38, 231–253 (2007).

  36. 36.

    Pennekamp, F., Schtickzelle, N. & Petchey, O. L. Ecol. Evol. 5, 2584–2595 (2015).

  37. 37.

    Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. Behav. Ecol. Sociobiol. 65, 23–35 (2011).

  38. 38.

    McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (CRC Press, Boca Raton, 2016).

  39. 39.

    Metz, J. A. & Gyllenberg, M. Proc. Biol. Sci. 268, 499–508 (2001).

Download references


F.A. thanks the Swiss National Science Foundation (grant no. PP00P3_150698). D.B. and S.M. thank the Fonds Wetenschappelijk Onderzoek (grant no. 11T7518N LV). S.J., E.L. and N.S. thank Université Catholique de Louvain (UCL) and Fonds de la Recherche Scientifique (F.R.S.)-FNRS. S.J. acknowledges a ‘MOVE-IN Louvain’ postdoctoral position at UCL. N.S. is Research Associate of F.R.S.-FNRS. D.L. and M.D. thank the Fyssen Foundation for funding. J.D.R. thanks the Research Foundation Flanders (FWO; grant no. FWO14/ASP/075). Fr.P. was financially supported by Swiss National Science Foundation grant no. 31003A_159498. J.C. was supported by an ANR-12-JSV7-0004-01, by the ERA-Net BiodivERsA, with the national funder Office national de l’eau et des milieux aquatiques (Onema), part of the 2012–2013 BiodivERsA call for research proposals and by the French Laboratory of Excellence project TULIP (ANR-10-LABX-41). This work was supported by an Investissements d’avenir programme from the Agence Nationale de la recherche (no. ANR-11-INBS-0001AnaEE-Services). D.L. and J.C. thank A. Trochet and O. Calvez for their valuable input in the experiments involving newts, toads and snakes. D.L. and J.C. thank L. Raymond for providing the butterflies. M.D., A.A. and L.M. are especially grateful to C. Van Gheluwe for running the experiments and to Maryvonne Charrier for providing the D. reticulatum slugs. We thank M. Thomas for valuable input on the statistical analyses. This is publication ISEM 2018-172 of the Institut des Sciences de l'Evolution - Montpellier.

Author information

All authors commented on the drafts and have read and approved the final manuscript. More details on individual contributions can be found in the Supplementary Information at the beginning of each specific Supplementary methods section. F.A., D.B., A.C., J.C., M.D., F.D.L., E.A.F., D.L., S.J., E.L., S.M., Fr.P. and N.S. designed the research. This research was designed during a meeting of the dispNet group ( organized at UCL by N.S. and D.B. F.A., A.A., S.B., D.B., J.C., M.D., F.D.L., J.D.R., L.D.G., E.A.F., D.L., S.J., O.K., E.L., C.J.L., L.M., F.M., S.M., Fe.P., Fr.P., N.S., L.T., A.V. and L.W. performed the experiments. More information can be found in the Supplementary Information. J.C. and E.A.F. analysed the experimental data. E.A.F. designed and analysed the model and drafted the manuscript.

Competing interests

The authors declare no competing interests.

Correspondence to Emanuel A. Fronhofer.

Supplementary information

  1. Supplementary Information

    Supplementary Methods, Supplementary Figures 1–5, Supplementary Tables 1–14, Supplementary References

  2. Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Effect of bottom-up resource limitation and top-down predation risk on emigration across 21 species, ranging from protists to vertebrates.
Fig. 2: Consequences of CDD for local and regional metacommunity dynamics.