Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adaptive transcription-splicing resynchronization upon losing an essential splicing factor

Abstract

Essential genes form the core of a genome and are therefore thought to be indispensable for cellular viability. However, recent findings have challenged this notion in that cells may survive in the absence of some essential genes provided that relevant genetic modifiers are in existence. We therefore hypothesized that the loss of an essential gene may not always be fatefully detrimental; instead, it may pave the way towards genome evolution. We experimentally tested this hypothesis in the context of pre-messenger RNA splicing by evolving yeast cells harbouring a permanent loss of the essential splicing factor Prp28 in the presence of a genetic modifier. Here, we show that cellular fitness can be restored by compensatory mutations that alter either the splicing machinery per se or the Spt–Ada–Gcn5 acetyltransferase transcription co-activator complex in the cells with no Prp28. Biochemical and genetic analysis revealed that slowing down transcription compensates for splicing deficiency, which in turn boosts cellular fitness. In addition, we found that inefficient splicing also conversely decreases nascent RNA production. Taken together, our data suggest that transcription-splicing synchronization contributes to robustness in the gene-expression pathway and argue that the intrinsic interconnectivity within a biological system can be exploited for compensatory evolution and system re-optimization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolved cells improved fitness and splicing.
Fig. 2: Attenuation of transcription improves fitness and splicing efficiency in the ancestor.
Fig. 3: Four additional evolved lines restored splicing efficiency and decreased nascent RNA production.
Fig. 4: Ancestral reconstruction of the adaptive alleles.

Similar content being viewed by others

Data availability

Genome sequencing and RNA-Seq data that support the findings of this study have been deposited in GenBank under BioProject identifier PRJNA431703.

References

  1. Rancati, G., Moffat, J., Typas, A. & Pavelka, N. Emerging and evolving concepts in gene essentiality. Nat. Rev. Genet. 19, 34–49 (2018).

    Article  CAS  Google Scholar 

  2. Dowell, R. D. et al. Genotype to phenotype: a complex problem. Science 328, 469 (2010).

    Article  CAS  Google Scholar 

  3. Liu, G. W. et al. Gene essentiality is a quantitative property linked to cellular evolvability. Cell 163, 1388–1399 (2015).

    Article  CAS  Google Scholar 

  4. Chen, S., Zhang, Y. E. & Long, M. New genes in Drosophila quickly become essential. Science 330, 1682–1685 (2010).

    Article  CAS  Google Scholar 

  5. Kim, D. U. et al. Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat. Biotechnol. 28, 617–623 (2010).

    Article  CAS  Google Scholar 

  6. Georgi, B., Voight, B. F. & Bucan, M. From mouse to human: evolutionary genomics analysis of human orthologs of essential genes. PLoS Genet. 9, e1003484 (2013).

    Article  CAS  Google Scholar 

  7. Chen, W. & Moore, M. J. The spliceosome: disorder and dynamics defined. Curr. Opin. Struct. Biol. 24, 141–149 (2014).

    Article  CAS  Google Scholar 

  8. Chang, T. H., Tung, L., Yeh, F. L., Chen, J. H. & Chang, S. L. Functions of the DExD/H-box proteins in nuclear pre-mRNA splicing. Biochim. Biophys. Acta 1829, 764–774 (2013).

    Article  CAS  Google Scholar 

  9. Staley, J. P. & Guthrie, C. An RNA switch at the 5′ splice site requires ATP and the DEAD box protein Prp28p. Mol. Cell 3, 55–64 (1999).

    Article  CAS  Google Scholar 

  10. Chen, J. Y. et al. Specific alterations of U1-C protein or U1 small nuclear RNA can eliminate the requirement of Prp28p, an essential DEAD box splicing factor. Mol. Cell 7, 227–232 (2001).

    Article  CAS  Google Scholar 

  11. Hage, R. et al. A targeted bypass screen identifies Ynl187p, Prp42p, Snu71p, and Cbp80p for stable U1 snRNP/pre-mRNA interaction. Mol. Cell. Biol. 29, 3941–3952 (2009).

    Article  CAS  Google Scholar 

  12. Du, H., Tardiff, D. F., Moore, M. J. & Rosbash, M. Effects of the U1C L13 mutation and temperature regulation of yeast commitment complex formation. Proc. Natl Acad. Sci. USA 101, 14841–14846 (2004).

    Article  CAS  Google Scholar 

  13. Yona, A. H. et al. Chromosomal duplication is a transient evolutionary solution to stress. Proc. Natl Acad. Sci. USA 109, 21010–21015 (2012).

    Article  CAS  Google Scholar 

  14. Szamecz, B. et al. The genomic landscape of compensatory evolution. PLoS Biol. 12, e1001935 (2014).

    Article  Google Scholar 

  15. Han, Y., Luo, J., Ranish, J. & Hahn, S. Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex. EMBO J. 33, 2534–2546 (2014).

    Article  CAS  Google Scholar 

  16. Bonnet, J. et al. The SAGA coactivator complex acts on the whole transcribed genome and is required for RNA polymerase II transcription. Genes Dev. 28, 1999–2012 (2014).

    Article  CAS  Google Scholar 

  17. Bhaumik, S. R. & Green, M. R. Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo. Mol. Cell. Biol. 22, 7365–7371 (2002).

    Article  CAS  Google Scholar 

  18. Braberg, H. et al. From structure to systems: high-resolution, quantitative genetic analysis of RNA polymerase II. Cell 154, 775–788 (2013).

    Article  CAS  Google Scholar 

  19. Moehle, E. A., Braberg, H., Krogan, N. J. & Guthrie, C. Adventures in time and space: splicing efficiency and RNA polymerase II elongation rate. RNA Biol. 11, 313–319 (2014).

    Article  CAS  Google Scholar 

  20. Munding, E. M., Shiue, L., Katzman, S., Donohue, J. P. & Ares, M. Competition between pre-mRNAs for the splicing machinery drives global regulation of splicing. Mol. Cell 51, 338–348 (2013).

    Article  CAS  Google Scholar 

  21. Kaplan, C. D., Jin, H. Y., Zhang, I. L. & Belyanin, A. Dissection of pol II trigger loop function and pol II activity-dependent control of start site selection in vivo. PLoS Genet. 8, e1002627 (2012).

    Article  CAS  Google Scholar 

  22. Herzel, L., Ottoz, D. S. M., Alpert, T. & Neugebauer, K. M. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Nat. Rev. Mol. Cell Biol. 18, 637–650 (2017).

    Article  CAS  Google Scholar 

  23. Chathoth, K. T., Barrass, J. D., Webb, S. & Beggs, J. D. A splicing-dependent transcriptional checkpoint associated with prespliceosome formation. Mol. Cell 53, 779–790 (2014).

    Article  CAS  Google Scholar 

  24. Gunderson, F. Q. & Johnson, T. L. Acetylation by the transcriptional coactivator Gcn5 plays a novel role in co-transcriptional spliceosome assembly. PLoS Genet. 5, e1000682 (2009).

    Article  Google Scholar 

  25. Pelechano, V., Chavez, S. & Perez-Ortin, J. E. A complete set of nascent transcription rates for yeast genes. PLoS ONE 5, e15442 (2010).

    Article  Google Scholar 

  26. DiCarlo, J. E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR–Cas systems. Nucleic Acids Res. 41, 4336–4343 (2013).

    Article  CAS  Google Scholar 

  27. Agarwal, R., Schwer, B. & Shuman, S. Structure–function analysis and genetic interactions of the Luc7 subunit of the Saccharomyces cerevisiae U1 snRNP. RNA 22, 1302–1310 (2016).

    Article  CAS  Google Scholar 

  28. Bai, R., Wan, R., Yan, C., Lei, J. & Shi, Y. Structures of the fully assembled Saccharomyces cerevisiae spliceosome before activation. Science 360, 1423–1429 (2018).

    Article  CAS  Google Scholar 

  29. Rancati, G. et al. Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell 135, 879–893 (2008).

    Article  CAS  Google Scholar 

  30. Van Leeuwen, J. et al. Exploring genetic suppression interactions on a global scale. Science 354, aag0839 (2016).

    Article  Google Scholar 

  31. Guthrie, C. & Fink, G. R. Guide to Yeast Genetics and Molecular Biology Vol. 194 (Academic Press, San Diego, 1991).

  32. Lu, Y. J., Swamy, K. B. & Leu, J. Y. Experimental evolution reveals interplay between Sch9 and polyploid stability in yeast. PLoS Genet. 12, e1006409 (2016).

    Article  Google Scholar 

  33. Lieu, P. T., Jozsi, P., Gilles, P. & Peterson, T. Development of a DNA-labeling system for array-based comparative genomic hybridization. J. Biomol. Tech. 16, 104–111 (2005).

    PubMed  PubMed Central  Google Scholar 

  34. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  Google Scholar 

  35. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  Google Scholar 

  36. Roberts, A. & Pachter, L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat. Methods 10, 71–73 (2013).

    Article  CAS  Google Scholar 

  37. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S.-Y. Tung, Y.-N. Chen and S.-T. Yu for help with genome sequencing, C. Kaplan for the rpb1 strains, J.-Y. Leu for the Cas9 plasmids, C.-F. Kao for advice on nascent transcript analysis, and M. J. McDonald, J.-Y. Leu, M. Ares, M.-C. Yao and members of the Yao and Chang laboratories for commenting on the manuscript. S.-L.C. was supported by an Academia Sinica Postdoctoral Fellowship. T.-H.C. was supported by grants from the Ministry of Science and Technology (MOST 105-2627-M-001-002 and 105-2311-B-001-059), Academia Sinica and MOST (MOST 106-0210-01-15-02 and 107-0210-01-19-01), and the Academia Sinica Thematic Project (AS-103-TP-B12).

Author information

Authors and Affiliations

Authors

Contributions

S.-L.C. and T.-H.C. conceived the project. S.-L.C. designed and conducted the experiments. S.-L.C. and H.-K.W. conducted the bioinformatics analysis. S.-L.C., L.T. and T.-H.C. analysed the data. S.-L.C. and T.-H.C. wrote the paper.

Corresponding author

Correspondence to Tien-Hsien Chang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures and Tables

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, SL., Wang, HK., Tung, L. et al. Adaptive transcription-splicing resynchronization upon losing an essential splicing factor. Nat Ecol Evol 2, 1818–1823 (2018). https://doi.org/10.1038/s41559-018-0684-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0684-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing