Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Seasonal abundance and survival of North America’s migratory avifauna determined by weather radar

Abstract

Avian migration is one of Earth’s largest processes of biomass transport, involving billions of birds. We estimated continental biomass flows of nocturnal avian migrants across the contiguous United States using a network of 143 weather radars. We show that, relative to biomass leaving in autumn, proportionally more biomass returned in spring across the southern United States than across the northern United States. Neotropical migrants apparently achieved higher survival during the combined migration and non-breeding period, despite an average three- to fourfold longer migration distance, compared with a more northern assemblage of mostly temperate-wintering migrants. Additional mortality expected with longer migration distances was probably offset by high survival in the (sub)tropics. Nearctic–Neotropical migrants relying on a ‘higher survivorship’ life-history strategy may be particularly sensitive to variations in survival on the overwintering grounds, highlighting the need to identify and conserve important non-breeding habitats.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Cumulative nocturnal migration traffic in spring and autumn.
Fig. 2: Southern and northern transects for quantifying seasonal biomass passage, migration traffic across these transects, and associated demographic indices.
Fig. 3: Annual cycle of avian biomass flow across the north and south transect.
Fig. 4: Angular definitions of transect direction and bird ground speed direction.

Data availability

NEXRAD weather radar data were accessed from the public ‘noaa-nexrad-level2’ Amazon S3 bucket20 (https://aws.amazon.com/public-datasets/nexrad/).

References

  1. 1.

    Hahn, S., Bauer, S. & Liechti, F. The natural link between Europe and Africa—2.1 billion birds on migration. Oikos 118, 624–626 (2009).

    Article  Google Scholar 

  2. 2.

    Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Hu, G. et al. Mass seasonal bioflows of high-flying insect migrants. Science 354, 1584–1587 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Holland, R. A., Wikelski, M. & Wilcove, D. S. How and why do insects migrate? Science 313, 794–796 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Faaborg, J. et al. Conserving migratory landbirds in the New World: do we know enough? Ecol. Appl. 20, 398–418 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Klaassen, R. et al. When and where does mortality occur in migratory birds? Direct evidence from long‐term satellite tracking of raptors. J. Anim. Ecol. 83, 176–184 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Sillett, T. S. & Holmes, R. T. Variation in survivorship of a migratory songbird throughout its annual cycle. J. Anim. Ecol. 71, 296–308 (2002).

    Article  Google Scholar 

  8. 8.

    Faaborg, J. et al. Recent advances in understanding migration systems of New World land birds. Ecol. Monogr. 80, 3–48 (2010).

    Article  Google Scholar 

  9. 9.

    Rushing, C. S. et al. Spatial and temporal drivers of avian population dynamics across the annual cycle. Ecology 98, 2837–2850 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Wilcove, D. & Wikelski, M. Going, going, gone: is animal migration disappearing? PLoS Biol. 6, 1361–1364 (2008).

    Article  CAS  Google Scholar 

  11. 11.

    La Sorte, F. A., Fink, D., Hochachka, W. M. & Kelling, S. Convergence of broad-scale migration strategies in terrestrial birds. Proc. R. Soc. B 283, 20152588 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Webster, M. S., Marra, P. P., Haig, S. M., Bensch, S. & Holmes, R. T. Links between worlds: unraveling migratory connectivity. Trends Ecol. Evol. 17, 76–83 (2002).

    Article  Google Scholar 

  13. 13.

    Sauer, J. R., Pendleton, G. W., Peterjohn, B. G. & Peterjohnt, B. G. Evaluating causes of population change in North American insectivorous songbirds. Conserv. Biol. 10, 465–478 (1996).

    Article  Google Scholar 

  14. 14.

    Marra, P. P. Linking winter and summer events in a migratory bird by using stable-carbon isotopes. Science 282, 1884–1886 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Anders, A. D. & Marshall, M. R. Increasing the accuracy of productivity and survival estimates in assembling landbird population status. Conserv. Biol. 19, 66–74 (2005).

    Article  Google Scholar 

  16. 16.

    Lok, T., Overdijk, O. & Piersma, T. The cost of migration: spoonbills suffer higher mortality during trans-Saharan spring migrations only. Biol. Lett. 11, 20140944 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Grüebler, M. U., Korner-Nievergelt, F. & Naef-Daenzer, B. Equal nonbreeding period survival in adults and juveniles of a long-distant migrant bird. Ecol. Evol. 4, 756–765 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Crum, T. D. & Alberty, R. L. The WSR-88D and the WSR-88D Operational Support Facility. Bull. Am. Meteorol. Soc. 74, 1669–1687 (1993).

    Article  Google Scholar 

  19. 19.

    Bauer, S. et al. From agricultural benefits to aviation safety: realizing the potential of continent-wide radar networks. BioScience 67, 912–918 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Ansari, S. et al. Unlocking the potential of NEXRAD data through NOAA’s Big Data Partnership. Bull. Am. Meteorol. Soc. 99, 189–204 (2017).

    Article  Google Scholar 

  21. 21.

    Dokter, A. M. et al. Bird migration flight altitudes studied by a network of operational weather radars. J. R. Soc. Interface 8, 30–43 (2011).

  22. 22.

    La Sorte, F. A., Fink, D., Hochachka, W. M., Delong, J. P. & Kelling, S. Spring phenology of ecological productivity contributes to the use of looped migration strategies by birds. Proc. R. Soc. B 281, 20140984 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Avian Conservation Assessment Database (Partners in Flight, 2017); http://pif.birdconservancy.org/ACAD/

  24. 24.

    PIF Population Estimates Database (Partners in Flight Science Committee, 2013); http://pif.birdconservancy.org/PopEstimates

  25. 25.

    La Sorte, F. A. & Fink, D. Projected changes in prevailing winds for transatlantic migratory birds under global warming. J. Anim. Ecol. 86, 273–284 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Faaborg, J. et al. Recent advances in understanding migration systems of New World land birds. Ecol. Monogr. 80, 3–48 (2010).

    Article  Google Scholar 

  27. 27.

    Cody, M. L. A general theory of clutch size. Evolution 20, 174–184 (1966).

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Böhning-Gaese, K., Halbe, B., Lemoine, N. & Oberrath, R. Factors influencing the clutch size, number of broods and annual fecundity of North American and European land birds. Evol. Ecol. Res. 2, 823–839 (2000).

    Google Scholar 

  29. 29.

    Martin, T. E. Avian life history evolution in relation to nest sites, nest predation, and food. Ecol. Monogr. 65, 101–127 (1995).

    Article  Google Scholar 

  30. 30.

    Schmidt, K. A., Rush, S. A. & Ostfeld, R. S. Wood thrush nest success and post-fledging survival across a temporal pulse of small mammal abundance in an oak forest. J. Anim. Ecol. 77, 830–837 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Anders, A. D., Dearborn, D. C., Faaborg, J. & Thompson, F. R. Juvenile survival in a population of Neotropical migrant birds. Conserv. Biol. 11, 698–707 (1997).

    Article  Google Scholar 

  32. 32.

    Vitz, A. C. & Rodewald, A. D. Influence of condition and habitat use on survival of post-fledging songbirds. Condor 113, 400–411 (2011).

    Article  Google Scholar 

  33. 33.

    Saether, B., Bakke, O. & Mar, N. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).

    Article  Google Scholar 

  34. 34.

    Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Van Doren, B. M., Sheldon, D., Geevarghese, J., Hochachka, W. M. & Farnsworth, A. Autumn morning flights of migrant songbirds in the northeastern United States are linked to nocturnal migration and winds aloft. Auk 132, 105–118 (2015).

    Article  Google Scholar 

  36. 36.

    Gaston, K. J., Visser, M. E. & Holker, F. The biological impacts of artificial light at night: the research challenge. Phil. Trans. R. Soc. B 370, 20140133 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Loss, S. R., Will, T. & Marra, P. P. Direct mortality of birds from anthropogenic causes. Annu. Rev. Ecol. Evol. Syst. 46, 99–120 (2015).

    Article  Google Scholar 

  38. 38.

    La Sorte, F. A. et al. Global change and the distributional dynamics of migratory bird populations wintering in Central America. Glob. Change Biol. 23, 5284–5296 (2017).

    Article  Google Scholar 

  39. 39.

    Bringi, V. N. & Chandrasekar, V. Polarimetric Doppler Weather Radar (Cambridge Univ. Press, Cambridge, 2001).

  40. 40.

    Stepanian, P. M., Horton, K. G., Melnikov, V. M., Zrnić, D. S. & Gauthreaux, S. A. Dual-polarization radar products for biological applications. Ecosphere 7, e01539 (2016).

    Article  Google Scholar 

  41. 41.

    Krajewski, W. F., Ntelekos, A. A. & Goska, R. A GIS-based methodology for the assessment of weather radar beam blockage in mountainous regions: two examples from the US NEXRAD network. Comput. Geosci. 32, 283–302 (2006).

    Article  Google Scholar 

  42. 42.

    USGS Small-Scale Dataset—100-Meter Resolution Elevation of the Conterminous United States 201212 TIFF (U.S. Geological Survey, 2012); https://www.sciencebase.gov/catalog/item/581d0539e4b08da350d52552

  43. 43.

    Doviak, R. J. & Zrnić, D. S. Doppler Radar and Weather Observations (Academic Press, San Diego, 1993).

  44. 44.

    Haase, G. & Landelius, T. Dealiasing of Doppler radar velocities using a torus mapping. J. Atmospheric Ocean. Technol. 21, 1566–1573 (2004).

    Article  Google Scholar 

  45. 45.

    Heistermann, M. et al. The emergence of open-source software for the weather radar community. Bull. Am. Meteorol. Soc. 96, 117–128 (2015).

    Article  Google Scholar 

  46. 46.

    Sheldon, D. et al. Approximate Bayesian inference for reconstructing velocities of migrating birds from weather radar. In Proc. 27th AAAI Conference on Artificial Intelligence 1334–1340 (AAAI Press, 2013).

  47. 47.

    Waldteufel, P. & Corbin, H. On the analysis of single-Doppler radar data. J. Appl. Meteorol. 18, 532–542 (1978).

    Article  Google Scholar 

  48. 48.

    Holleman, I. Quality control and verification of weather radar wind profiles. J. Atmospheric Ocean. Technol. 22, 1541–1550 (2005).

    Article  Google Scholar 

  49. 49.

    Vaughn, C. R. Birds and insects as radar targets: a review. Proc. IEEE 73, 205–227 (1985).

    Article  Google Scholar 

  50. 50.

    Merkel, D. Docker: lightweight Linux containers for consistent development and deployment. Linux J. 2014, 2 (2014).

    Google Scholar 

  51. 51.

    Alerstam, T. Flight by night or day? Optimal daily timing of bird migration. J. Theor. Biol. 258, 530–536 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Pebesma, E. J. Multivariable geostatistics in S: the gstat package. Comput. Geosci. 30, 683–691 (2004).

    Article  Google Scholar 

  53. 53.

    Westbrook, J. K. Noctuid migration in Texas within the nocturnal aeroecological boundary layer. Integr. Comp. Biol. 48, 99–106 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Drake, V. A. & Reynolds, D. R. Radar Entomology: Observing Insect Flight and Migration (CABI, Wallingford, Boston, 2012).

  55. 55.

    Dunning, J. B. Jr CRC Handbook of Avian Body Masses 2nd edn (CRC Press, Boca Raton, 2008).

  56. 56.

    Ridgely, R. S. et al. Digital Distribution Maps of the Birds of the Western Hemisphere Version 3.0. (NatureServe, 2017).

  57. 57.

    La Sorte, F. A., Hochachka, W. M., Farnsworth, A., Dhondt, A. A. & Sheldon, D. The implications of mid-latitude climate extremes for North American migratory bird populations. Ecosphere 7, e01261 (2016).

    Article  Google Scholar 

  58. 58.

    Sahr, K. Hexagonal discrete global grid systems for geospatial computing. Arch. Photogramm. Cartogr. Remote Sens. 22, 363–376 (2011).

    Google Scholar 

  59. 59.

    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  60. 60.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, Thousand Oaks, 2002).

Download references

Acknowledgements

This work was supported through a Rose Postdoctoral Fellowship (to A.M.D.), AWS Cloud Credits for Research (to A.M.D.), NSF ABI innovation DBI-1661259 (to A.M.D. and F.A.L.S.), the Leon Levy Foundation (to A.F. and D.F.), National Fish and Wildlife Foundation 6001.16.052172 (to A.F. and S.K.), NSF IIS-1633206 (to A.F. and S.K.), NSF ABI sustaining DBI-1356308 (to F.A.L.S., D.F. and S.K.) and the Wolf Creek Charitable Foundation (F.A.L.S.).

Author information

Affiliations

Authors

Contributions

A.M.D., A.F. and S.K. conceived the study. A.M.D. performed the research and analysed the data. F.A.L.S. calculated species breeding and wintering distribution centroids. K.V.R. compiled transect species compositions from PIF population estimates. A.M.D. wrote the paper with input from all authors.

Corresponding author

Correspondence to Adriaan M. Dokter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text; Supplementary references; Supplementary Figures 1–5; Supplementary Tables 1–6; Captions to Supplementary Videos

Reporting Summary

Supplementary Video 1

Nightly migration traffic mt (accumulated per night, in blue-white linear colour scale) and average ground speed direction (orange arrows) during spring from 1 March 2016 to 30 June

Supplementary Video 2

Nightly migration traffic mt (accumulated per night, in blue-white linear colour scale) and average ground speed direction (orange arrows) during spring from 1 August 2016 to 30 November

Supplementary Video 3

Seasonally accumulating migration traffic mt (accumulated from 1 March 2016 until video frame time stamp, in blue-white logarithmic colour scale) up to 30 June 2016

Supplementary Video 4

Seasonally accumulating migration traffic mt (accumulated from 1 August 2016 until video frame time stamp, in blue-white logarithmic colour scale) up to 30 November 2016

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dokter, A.M., Farnsworth, A., Fink, D. et al. Seasonal abundance and survival of North America’s migratory avifauna determined by weather radar. Nat Ecol Evol 2, 1603–1609 (2018). https://doi.org/10.1038/s41559-018-0666-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing