Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High ecological complexity in benthic Ediacaran communities

Abstract

A long-running debate over the affinities of the Neoproterozoic ‘Ediacara biota’ has led to contrasting interpretations of Ediacaran ecosystem complexity. A ‘simple’ model assumes that most, if not all, Ediacaran organisms shared similar basic ecologies. A contrasting ‘complex’ model suggests that the Ediacara biota more likely represent organisms from a variety of different positions on the eukaryotic tree and thus occupied a wide range of different ecologies. We perform a quantitative test of Ediacaran ecosystem complexity using rank abundance distributions (RADs). We show that the Ediacara biota formed complex-type communities throughout much of their stratigraphic range and thus likely comprised species that competed for different resources and/or created niche for others (‘ecosystem engineers’). One possible explanation for this pattern rests in the recent inference of multiple metazoan-style feeding modes among the Ediacara biota; in this scenario, different Ediacaran groups/clades were engaged in different methods of nutrient collection and thus competed for different resources. This result illustrates that the Ediacara biota may not have been as bizarre as it is sometimes suggested, and provides an ecological link with the animal-dominated benthic ecosystems of the Palaeozoic era.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of Ediacaran in situ communities preserved on bedding planes.
Fig. 2: Distribution of 'simple' (geometric, log-series and zero-sum multinomial) and 'complex' (log-normal and Zipf) RADs throughout the Ediacaran period.
Fig. 3: The effects of three ‘guilds’ within a community (illustrated using different colours) utilizing separate resources and following independent geometric RADs.

Similar content being viewed by others

Data availability

All R code and data are provided in the online supplementary materials.

References

  1. McMenamin, M. A. S. The Garden of Ediacara. PALAIOS 1, 178–182 (1986).

    Article  Google Scholar 

  2. Bush, A. M., Bambach, R. K. & Erwin, D. H. in Quantifying the Evolution of Early Life Topics in Geobiology 1st edn (eds Laflamme, M. et al.) 111–133 (Springer, Berlin, 2011).

  3. Laflamme, M., Darroch, S. A. F., Tweedt, S., Peterson, K. J. & Erwin, D. H. The end of the Ediacara biota: extinction, biotic replacement, or Cheshire Cat?. Gondwana Res. 23, 558–573 (2013).

    Article  Google Scholar 

  4. Schiffbauer, J. D. et al. The latest Ediacaran wormworld fauna: setting the ecological stage for the Cambrian explosion. GSA Today 26, 4–11 (2016).

    Article  Google Scholar 

  5. Erwin, D. H. et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–1097 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Erwin, D. H. & Valentine, J. W. The Cambrian Explosion: The Construction of Animal Biodiversity. (Roberts & Company: Greenwood Village, 2013).

    Google Scholar 

  7. Rahman, I. A., Darroch, S. A. F., Racicot, R. A. & Laflamme, M. Suspension feeding in the enigmatic Ediacaran organism Tribrachidium demonstrates complexity of Neoproterozoic ecosystems. Sci. Adv. 1, e1500800 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Darroch, S. A. F., Rahman, I. A., Gibson, B., Racicot, R. A. & Laflamme, M. Inference of facultative mobility in the enigmatic Ediacaran organism Parvancorina. Biol. Lett. 13, 20170033 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Paterson, J. R., Gehling, J. G., Droser, M. L. & Bicknell, R. D. Rheotaxis in the Ediacaran epibenthic organism Parvancorina from South Australia. Sci. Rep. 7, 45539 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wagner, P. J., Kosnik, M. A. & Lidgard, S. Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science 314, 1289–1292 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Laflamme, M., Gehling, J. G. & Droser, M. L. Deconstructing an Ediacaran frond: three-dimensional preservation of Arborea from Ediacara, South Australia. J. Paleontol. 92, 323–335 (2018).

    Article  Google Scholar 

  12. Mitchell, E. G. & Butterfield, N. J. Spatial analyses of Ediacaran communities at Mistaken Point. Paleobiology 44, 40–57 (2018).

    Article  Google Scholar 

  13. Gray, J. S. in Organization of Communities Past and Present (eds Gee, J. H. R. & Gillier, P. S.) 53–67 (Blackwell, Oxford, 1987).

  14. Root, R. B. The niche exploitation pattern of the blue-gray gnatcatcher. Ecol. Monogr. 37, 317–350 (1967).

    Article  Google Scholar 

  15. Fisher, R. A., Corbet, A. S. & Williams, C. B. The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 12, 42–58 (1943).

    Article  Google Scholar 

  16. Hubbell, S. P. A unified theory of biogeography and relative species abundance and its application to tropical rain forests and coral reefs. Coral Reefs 16(Suppl 1), S9–S21 (1997).

    Article  Google Scholar 

  17. Frontier, S. in Oceanography and Marine Biology: An Annual Review (ed. Barnes, M.) 253–312 (Aberdeen Univ. Press, Aberdeen,1985).

  18. Laland, K. N., Odling-Smee, F. J. & Feldman, M. W. Evolutionary consequences of niche construction and their implications for ecology. Proc. Natl Acad. Sci. USA 96, 10242–10247 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kosnik, M. A. & Wagner, P. J. Effects of taxon abundance distributions on expected numbers of sampled taxa. Evol. Ecol. Res. 8, 195–211 (2006).

    Google Scholar 

  20. Xiao, S. & Laflamme, M. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends Ecol. Evol. 24, 31–40 (2009).

    Article  PubMed  Google Scholar 

  21. Tucker, C. M., Davies, T. J., Cadotte, M. W. & Pearse, W. D. On the relationship between phylogenetic diversity and trait diversity. Ecology 99, 1473–1479 (2018).

    Article  PubMed  Google Scholar 

  22. Laflamme, M., Xiao, S. & Kowalewski, M. From the cover: osmotrophy in modular Ediacara organisms. Proc. Natl Acad. Sci. USA 106, 14438–14443 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sperling, E. A., Peterson, K. J. & Laflamme, M. Rangeomorphs, Thectardis (Porifera?) and dissolved organic carbon in the Ediacaran oceans. Geobiology 9, 24–33 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Glaessner, M. F. in Treatise on Invertebrate Paleontology. Part A (eds Robison, R. A. & Teichert, C.) A79–A118 (Univ. Kansas Press, Boulder, 1979).

  25. Jenkins, R. J. F. The enigmatic Ediacaran (Late Precambrian) genus Rangea and related forms. Paleobiology 11, 336–355 (1985).

    Article  Google Scholar 

  26. Gehling, J. G. The Case for Ediacaran Fossil Roots to the Metazoan Tree Vol. 20, 181–224 (Geological Society of India, Bangalore, 1991).

  27. Antcliffe, J. B. & Brasier, M. D. Charnia at 50: developmental models for Ediacaran fronds. Palaeontology 51, 11–26 (2008).

    Article  Google Scholar 

  28. Budd, G. E. & Jensen, S. The origin of the animals and a ‘Savannah’ hypothesis for early bilaterian evolution. Biol. Rev. Camb. Philos. Soc. 92, 446–473 (2017).

    Article  PubMed  Google Scholar 

  29. Dececchi, T. A., Narbonne, G. M., Greentree, C. & Laflamme, M. Relating Ediacaran fronds. Paleobiology 43, 171–180 (2017).

    Article  Google Scholar 

  30. Sperling, E. A. & Vinther, J. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evol. Dev. 12, 201–209 (2010).

    Article  PubMed  Google Scholar 

  31. Droser, M. L., Tarhan, L. G. & Gehling, J. G. The rise of animals in a changing environment: global ecological innovation in the Late Ediacaran. Annu. Rev. Earth. Planet. Sci. 45, 593–617 (2017).

    Article  CAS  Google Scholar 

  32. Droser, M. L. & Gehling, J. G. The advent of animals: the view from the Ediacaran. Proc. Natl Acad. Sci. USA 112, 4865–4870 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Darroch, A. F., Laflamme, M. & Clapham, M. E. Population structure of the oldest known macroscopic communities from Mistaken Point, Newfoundland. Paleobiology 39, 591–608 (2013).

    Article  Google Scholar 

  34. Clapham, M. E., Narbonne, G. M. & Gehling, J. G. Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology 29, 527–544 (2003).

    Article  Google Scholar 

  35. Gehling, J. G. & Droser, M. L. How well do fossil assemblages of the Ediacara biota tell time?. Geology 41, 447–450 (2013).

    Article  Google Scholar 

  36. Zakrevskaya, M. Paleoecological reconstruction of the Ediacaran benthic macroscopic communities of the White Sea (Russia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 410, 27–38 (2014).

    Article  Google Scholar 

  37. Coutts, F. J., Gehling, J. G. & García-Bellido, D. C. How diverse were early animal communities? An example from Ediacara Conservation Park, Flinders Ranges, South Australia. Alcheringa 40, 407–421 (2016).

    Article  Google Scholar 

  38. Droser, M. L., Gehling, J. G. & Jensen, S. R. Assemblage palaeoecology of the Ediacara biota: the unabridged edition? Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 131–1457 (2006).

    Article  Google Scholar 

  39. Darroch, S. A. F. et al. Biotic replacement and mass extinction of the Ediacara biota. Proc. Biol. Sci. 282, 20151003 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Boag, T. H., Darroch, S. A. F. & Laflamme, M. Ediacaran distributions in space and time: testing assemblage concepts of earliest macroscopic body fossils. Paleobiology 42, 574–594 (2016).

    Article  Google Scholar 

  41. Fedonkin, M. A. & Waggoner, B. M. The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature 388, 868–871 (1997).

    Article  CAS  Google Scholar 

  42. Gehling, J. G., Runnegar, B. N. & Droser, M. L. Scratch traces of large Ediacara bilaterian animals. J. Paleontol. 88, 284–298 (2014).

    Article  Google Scholar 

  43. Ivantsov, A. Y. New reconstruction of Kimberella, problematic Vendian metazoan. Paleontol. J. 43, 601–611 (2009).

    Article  Google Scholar 

  44. Ivantsov, A. Y. & Malakhovskaya, Y. E. Giant traces of Vendian animals. Doklady Earth Sci. 385A, 618–622 (2002).

    CAS  Google Scholar 

  45. Liu, A. G., Kenchington, C. G. & Mitchell, E. G. Remarkable insights into the paleoecology of the Avalonian Ediacaran macrobiota. Gondwana Res. 27, 1355–1380 (2015).

    Article  Google Scholar 

  46. Jensen, S. & Runnegar, B. N. A complex trace fossil from the Spitskop Member (terminal Ediacaran–? Lower Cambrian) of southern Namibia. Geol. Mag. 142, 561–569 (2005).

    Article  Google Scholar 

  47. Mángano, M. G. & Buatois, L. A. Decoupling of body-plan diversification and ecological structuring during the Ediacaran–Cambrian transition: evolutionary and geobiological feedbacks. Proc. Biol. Sci. 281, 20140038 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Buatois, L. A., Wisshak, M., Wilson, M. A. & Mángano, M. G. Categories of architectural designs in trace fossils: a measure of ichnodisparity. Earth Sci. Rev. 164, 102–181 (2017).

    Article  CAS  Google Scholar 

  49. Smith, E. F. et al. The end of the Ediacaran: two new exceptionally preserved body fossil assemblages from Mount Dunfee, Nevada, USA. Geology 44, 911–914 (2016).

    Article  CAS  Google Scholar 

  50. Darroch, S. A. F., Smith, E. F., Laflamme, M. & Erwin, D. H. Ediacaran extinction and Cambrian explosion. Trends Ecol. Evol. 33, 653–663 (2018).

    Article  PubMed  Google Scholar 

  51. Gray, J. S. Pollution-induced changes in populations. Phil. Trans. R. Soc. Lond. B 286, 545–561 (1979).

    Article  CAS  Google Scholar 

  52. Hamer, K. C., Hill, J. K., Lace, L. A. & Langan, A. M. Ecological and biogeographical effects of forest disturbance on tropical butterflies of Sumba, Indonesia. J. Biogeogr. 24, 67–75 (1997).

    Article  Google Scholar 

  53. Hill, J. K., Hamer, K. C., Lace, L. A. & Banham, W. M. T. Effects of selective logging on tropical forest butterflies on Buru, Indonesia. J. Appl. Ecol. 32, 754–760 (1995).

    Article  Google Scholar 

  54. Mouillot, D. & Lepretre, A. Introduction of relative abundance distribution (RAD) indices, estimated from the rank-frequency diagrams (RFD), to assess changes in community diversity. Environ. Monit. Assess. 63, 279–295 (2000).

    Article  Google Scholar 

  55. McElwain, J. C., Wagner, P. J. & Hesselbo, S. P. Fossil plant relative abundances indicate sudden loss of Late Triassic biodiversity in Greenland. Science 324, 1554–1556 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Liu, A. G., Mcllroy, D. & Brasier, M. D. First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland. Geology 38, 123–126 (2010).

    Article  Google Scholar 

  57. Buatois, L. A. & Mángano, M. G. Ichnology: Organism–Substrate Interactions in Space and Time (Cambridge Univ. Press, Cambridge, 2011).

  58. Bottjer, D. J. & Jablonski, D. Paleoenvironmental patterns in the evolution of post-Paleozoic benthic marine invertebrates. PALAIOS 3, 540–560 (1988).

    Article  Google Scholar 

  59. Brocks, J. J. et al. The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548, 578–581 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Butterfield, N. J. Early evolution of the Eukaryota. Palaeontology 58, 5–17 (2015).

    Article  Google Scholar 

  61. Mitchell, E. G., Kenchington, C. G., Liu, A. G., Matthews, J. J. & Butterfield, N. J. Reconstructing the reproductive mode of an Ediacaran macro-organism. Nature 524, 343–346 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Gehling, J. G. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. PALAIOS 14, 40–57 (1999).

    Article  Google Scholar 

  63. Budd, G. E. & Jensen, S. A critical reappraisal of the fossil record of the bilaterian phyla. Biol. Rev. Camb. Philos. Soc. 75, 253–295 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Gibson, B. M., Schiffbauer, J. D. & Darroch, S. A. F. Ediacaran-style decay experiments using mollusks and sea anemones. PALAIOS 33, 185–203 (2018).

    Article  Google Scholar 

  65. Gehling, J. G. Sequence stratigraphic context of the Ediacara Member, Rawnsley Quartzite, South Australia: a taphonomic window into the Neoproterozoic biosphere. Precambrian Res. 100, 65–95 (2000).

    Article  CAS  Google Scholar 

  66. Tarhan, L. G., Droser, M. L. & Gehling, J. G. Taphonomic controls on Ediacaran diversity: uncovering the holdfast origin of morphologically variable enigmatic structures. PALAIOS 25, 823–830 (2010).

    Article  Google Scholar 

  67. Burzynski, G. & Narbonne, G. M. The discs of Avalon: relating discoid fossils to frondose organisms in the Ediacaran of Newfoundland, Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 434, 34–45 (2015).

    Article  Google Scholar 

  68. Sugiura, N. Further analysis of the data by Akaike’s information criterion and the finite corrections. Commun. Stat. Theory Methods A7, 13–26 (1978).

    Article  Google Scholar 

  69. Liu, A. G., McIlroy, D., Antcliffe, J. B. & Brasier, M. D. Effaced preservation in the Ediacara biota and its implications for the early macrofossil record. Palaeontology 54, 607–630 (2011).

    Article  Google Scholar 

  70. Plotnick, R. E. & Sepkoski, J. Jr. A multiplicative multifractal model for originations and extinctions. Paleobiology 27, 126–139 (2001)..

Download references

Acknowledgements

S.A.F.D. was funded by a Smithsonian Institution Peter Buck Postdoctoral Fellowship. M.L. and S.A.F.D. also acknowledge generous funding from a National Geographic Research and Exploration Grant (9241-13), which allowed collection of Ediacaran population data from Namibia. This is Paleobiology Database Publication 318.

Author information

Authors and Affiliations

Authors

Contributions

S.A.F.D. and M.L. collected and compiled the data. P.J.W. and S.A.F.D. performed the analyses. All authors contributed to writing the paper.

Corresponding author

Correspondence to Simon A. F. Darroch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary tables, figures and references

Reporting Summary

Supplementary Dataset 1

Excel file detailing the taxonomic composition (and assignments) for all assemblages used in analyses

Supplementary Dataset 2

R code written and used by the authors to calculate RAD fits for Ediacaran datasets

Supplementary dataset 3

txt file for use with R code, providing relative abundances of Ediacaran taxa within studied assemblages

Supplementary dataset 4

txt file for use with R code, providing the names of assemblages used in analyses

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darroch, S.A.F., Laflamme, M. & Wagner, P.J. High ecological complexity in benthic Ediacaran communities. Nat Ecol Evol 2, 1541–1547 (2018). https://doi.org/10.1038/s41559-018-0663-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0663-7

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene