Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Emergence of evolutionarily stable communities through eco-evolutionary tunnelling

Abstract

Ecological and evolutionary dynamics of communities are inexorably intertwined. The ecological state determines the fate of newly arising mutants, and mutations that increase in frequency can reshape the ecological dynamics. Evolutionary game theory and its extensions within adaptive dynamics have been the mathematical frameworks for understanding this interplay, leading to notions such as evolutionarily stable states (ESS) in which no mutations are favoured, and evolutionary branching points near which the population diversifies. A central assumption behind these theoretical treatments has been that mutations are rare so that the ecological dynamics has time to equilibrate after every mutation. A fundamental question is whether qualitatively new phenomena can arise when mutations are frequent. Here, we describe an adaptive diversification process that robustly leads to complex ESS, despite the fact that such communities are unreachable through a step-by-step evolutionary process. Rather, the system as a whole tunnels between collective states over a short timescale. The tunnelling rate is a sharply increasing function of the rate at which mutations arise in the population. This makes the emergence of ESS communities virtually impossible in small populations, but generic in large ones. Moreover, communities emerging through this process can spatially spread as single replication units that outcompete other communities. Overall, this work provides a qualitatively new mechanism for adaptive diversification and shows that complex structures can generically evolve even when no step-by-step evolutionary path exists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of antibiotic interactions leads to robust emergence of ESCs that are unreachable through adaptive dynamics.
Fig. 2: ESCs emerge abruptly through eco-evolutionary tunnelling whose rate scales superlinearly with mutation rate and population size.
Fig. 3: Pathways of ESC emergence.
Fig. 4: Different types of eco-evolutionary tunnelling transitions from one-strain to three-strain communities.
Fig. 5: Accelerated emergence and spread of ESC in spatially extended systems.

Similar content being viewed by others

References

  1. Schoener, T. W. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331, 426–429 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Pelletier, F., Garant, D. & Hendry, A. P. Eco-evolutionary dynamics. Phil. Trans. R. Soc. Lond. B 364, 1483–1489 (2009).

    Article  CAS  Google Scholar 

  3. Haloin, J. R. & Strauss, S. Y. Interplay between ecological communities and evolution. Ann. NY Acad. Sci. 1133, 87–125 (2008).

    Article  PubMed  Google Scholar 

  4. Weber, M. G., Wagner, C. E., Best, R. J., Harmon, L. J. & Matthews, B. Evolution in a community context: on integrating ecological interactions and macroevolution. Trends Ecol. Evol. 32, 291–304 (2017).

    Article  PubMed  Google Scholar 

  5. Post, D. M. & Palkovacs, E. P. Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Phil. Trans. R. Soc. B 364, 1629–1640 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sanchez, A. & Gore, J. Feedback between population and evolutionary dynamics determines the fate of social microbial populations. PLoS Biol. 11, e1001547 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rainey, P. B. & Travisano, M. Adaptive radiation in a heterogeneous environment. Nature 394, 69–72 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Gómez, P. & Buckling, A. Real-time microbial adaptive diversification in soil. Ecol. Lett. 16, 650–655 (2013).

    Article  PubMed  Google Scholar 

  9. Callahan, B. J., Fukami, T. & Fisher, D. S. Rapid evolution of adaptive niche construction in experimental microbial populations. Evolution 68, 3307–3316 (2014).

    Article  PubMed  Google Scholar 

  10. Koeppel, A. F. et al. Speedy speciation in a bacterial microcosm: new species can arise as frequently as adaptations within a species. ISME J. 7, 1080–1091 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hiltunen, T., Virta, M. & Laine, A.-L. Antibiotic resistance in the wild: an eco-evolutionary perspective. Phil. Trans. R. Soc. Lond. B 372, 20160039 (2017).

    Article  Google Scholar 

  12. Fischbach, M. A., Walsh, C. T. & Clardy, J. The evolution of gene collectives: how natural selection drives chemical innovation. Proc. Natl Acad. Sci. USA 105, 4601–4608 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Celiker, H. & Gore, J. Clustering in community structure across replicate ecosystems following a long-term bacterial evolution experiment. Nat. Commun. 5, 4643 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Cordero, O. X. & Polz, M. F. Explaining microbial genomic diversity in light of evolutionary ecology. Nat. Rev. Microbiol. 12, 263–273 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Stein, R. R. et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 9, e1003388 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 0109 (2017).

    Article  Google Scholar 

  18. Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F. & Hairston, N. G. Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424, 303–306 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Lawrence, D. et al. Species interactions alter evolutionary responses to a novel environment. PLoS Biol. 10, e1001330 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Herron, M. D. & Doebeli, M. Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. PLoS Biol. 11, e1001490 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Harrington, K. I. & Sanchez, A. Eco-evolutionary dynamics of complex social strategies in microbial communities. Commun. Integr. Biol. 7, e28230 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maynard Smith, J. & Price, G. R. The logic of animal conflict. Nature 246, 15–18 (1973).

    Article  Google Scholar 

  24. Maynard Smith, J. Evolution and the Theory of Games (Cambridge Univ. Press, Cambridge, 1982).

  25. Levin, S. A. & Muller-Landau, H. C. The emergence of diversity in plant communities. C. R. Acad. Sci. III 323, 129–139 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Conlin, P. L., Chandler, J. R. & Kerr, B. Games of life and death: antibiotic resistance and production through the lens of evolutionary game theory. Curr. Opin. Microbiol. 21, 35–44 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Boyd, R. & Lorberbaum, J. P. No pure strategy is evolutionarily stable in the repeated prisoner’s dilemma game. Nature 327, 58–59 (1987).

    Article  Google Scholar 

  28. Nowak, M. A. & Sigmund, K. Evolutionary dynamics of biological games. Science 303, 793–799 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Geritz, S. A. H., Kisdi, E., Meszena, G. & Metz, J. A. J. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12, 35–57 (1998).

    Article  Google Scholar 

  30. Diekmann O. A Beginner’s Guide to Adaptive Dynamics Mathematical Modelling of Population Dynamics Vol. 63 (ed. Rudnicki, R.) 47–86 (Banach Center Publications, Warsaw, 2004).

  31. Brännström, Johansson, J. & von Festenberg, N. The hitchhikeras guide to adaptive dynamics. Games 4, 304–328 (2013).

    Article  Google Scholar 

  32. Nowak, M. An evolutionarily stable strategy may be inaccessible. J. Theor. Biol. 142, 237–241 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Boldin, B. & Diekmann, O. An extension of the classification of evolutionarily singular strategies in adaptive dynamics. J. Math. Biol. 69, 905–940 (2013).

    Article  PubMed  Google Scholar 

  34. Doebeli, M. Adaptive Diversification (MPB-48) (Princeton Univ. Press, Princeton, NJ, 2011).

  35. Gerrish, P. J. & Lenski, R. E. The fate of competing beneficial mutations in an asexual population. Genetica 102/103, 127–144 (1998).

    Article  Google Scholar 

  36. Hegreness, M., Shoresh, N., Hartl, D. & Kishony, R. An equivalence principle for the incorporation of favorable mutations in asexual populations. Science 311, 1615–1617 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Iwasa, Y., Michor, F. & Nowak, M. A. Stochastic tunnels in evolutionary dynamics. Genetics 166, 1571–1579 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Desai, M. M. & Fisher, D. S. Beneficial mutation selection balance and the effect of linkage on positive selection. Genetics 176, 1759–1798 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Weissman, D. B., Desai, M. M., Fisher, D. S. & Feldman, M. W. The rate at which asexual populations cross fitness valleys. Theor. Popul. Biol. 75, 286–300 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Weissman, D. B., Feldman, M. W. & Fisher, D. S. The rate of fitness-valley crossing in sexual populations. Genetics 186, 1389–1410 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Martens, E. A Kostadinov, R, Maley, C. C & Hallatschek, O. Spatial structure increases the waiting time for cancer. New J. Phys. 13, 115014 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vetsigian, K. Diverse modes of eco-evolutionary dynamics in communities of antibiotic-producing microorganisms. Nat. Ecol. Evol. 1, 0189 (2017).

    Article  Google Scholar 

  43. Weinreich, D. M. & Chao, L. Rapid evolutionary escape by large populations from local fitness peaks is likely in nature. Evolution 59, 1175–1182 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Kerr, B., Riley, M. A., Feldman, M. W. & Bohannan, B. J. M. Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors. Nature 418, 171–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Reichenbach, T., Mobilia, M. & Frey, E. Mobility promotes and jeopardizes biodiversity in rock–paper–scissors games. Nature 448, 1046–1049 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Karthika, S., Radhakrishnan, T. K. & Kalaichelvi, P. A review of classical and nonclassical nucleation theories. Cryst. Growth Des. 16, 6663–6681 (2016).

    Article  CAS  Google Scholar 

  47. Babichenko, Y. & Rubinstein, A. Communication complexity of approximate Nash equilibria. In Proc. 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2017) 878–889 (ACM Press, 2017).

  48. Kimura, M. & Ohta, T. The average number of generations until fixation of a mutant gene in a finite population. Genetics 61, 763–771 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Simons Foundation, Targeted Grant in the Mathematical Modeling of Living Systems Award 342039 and National Science Foundation Grant DEB 1457518. This research was performed using the compute resources and assistance of the University of Wisconsin-Madison Center for High Throughput Computing in the Department of Computer Sciences. We thank S. A. Levin and D. Weissman for insightful discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.E.K. and K.V. designed the study, analysed the data, performed the simulations and wrote the manuscript.

Corresponding author

Correspondence to Kalin Vetsigian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures 1–10

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotil, S.E., Vetsigian, K. Emergence of evolutionarily stable communities through eco-evolutionary tunnelling. Nat Ecol Evol 2, 1644–1653 (2018). https://doi.org/10.1038/s41559-018-0655-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0655-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing