Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Partial genomic survival of cave bears in living brown bears

Abstract

Although many large mammal species went extinct at the end of the Pleistocene epoch, their DNA may persist due to past episodes of interspecies admixture. However, direct empirical evidence of the persistence of ancient alleles remains scarce. Here, we present multifold coverage genomic data from four Late Pleistocene cave bears (Ursus spelaeus complex) and show that cave bears hybridized with brown bears (Ursus arctos) during the Pleistocene. We develop an approach to assess both the directionality and relative timing of gene flow. We find that segments of cave bear DNA still persist in the genomes of living brown bears, with cave bears contributing 0.9 to 2.4% of the genomes of all brown bears investigated. Our results show that even though extinction is typically considered as absolute, following admixture, fragments of the gene pool of extinct species can survive for tens of thousands of years in the genomes of extant recipient species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phylogenetic relationships of the sequenced brown, polar and cave bear genomes.
Fig. 2
Fig. 3: Test of gene flow direction based on the distribution of rooted tree topologies along a non-overlapping 25 kb sliding window.

Similar content being viewed by others

References

  1. Shurtliff, Q. R. Mammalian hybrid zones: a review. Mamm. Rev. 43, 1–21 (2013).

    Article  Google Scholar 

  2. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baca, M. et al. Retreat and extinction of the Late Pleistocene cave bear (Ursus spelaeus sensu lato). Naturwissenschaften 103, 11–12 (2016).

  6. Stiller, M. et al. Withering away—25,000 years of genetic decline preceded cave bear extinction. Mol. Biol. Evol. 27, 975–978 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Fortes, G. G. et al. Ancient DNA reveals differences in behaviour and sociality between brown bears and extinct cave bears. Mol. Ecol. 25, 4907–4918 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Noonan, J. P. et al. Genomic sequencing of Pleistocene cave bears. Science 309, 597–599 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Krause, J. et al. Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene–Pliocene boundary. Evol. Biol. 8, 220 (2008).

    Google Scholar 

  10. Cahill, J. A. et al. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears. Mol. Ecol. 24, 1205–1217 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cahill, J. A. et al. Genomic evidence of globally widespread admixture from polar bears into brown bears during the last ice age. Mol. Biol. Evol. 35, 1120–1129 (2010).

    Article  Google Scholar 

  12. Cahill, J. A. et al. Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution. PLoS Genet. 9, e1003345 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kumar, V. et al. The evolutionary history of bears is shaped by gene flow across species. Sci. Rep. 7, 46487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kurtén, B. Pleistocene Mammals of Europe (Weidenfeld & Nicholson, London, 1968).

  15. Kurtén, B. The Cave Bear Story: Life and Death of a Vanished Animal (Columbia Univ. Press, New York, NY, 1976).

  16. Stiller, M. et al. Mitochondrial DNA diversity and evolution of the Pleistocene cave bear complex. Quat. Int. 339, 224–231 (2014).

    Article  Google Scholar 

  17. Barlow, A. et al. Massive influence of DNA isolation and library preparation approaches on palaeogenomic sequencing data. Preprint at https://doi.org/10.1101/075911 (2016).

  18. Pinhasi, R. et al. Middle Palaeolithic human occupation of the high altitude region of Hovk-1, Armenia. Quat. Sci. Rev. 30, 3846–3857 (2011).

    Article  Google Scholar 

  19. Li, R. et al. The sequence and de novo assembly of the giant panda genome. Nature 463, 311–317 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Baryshnikov, G. F. & Puzachenko, A. Y. Craniometrical variability in the cave bears (Carnivora, Ursidae): multivariate comparative analysis. Quat. Int. 245, 350–368 (2011).

    Article  Google Scholar 

  21. Durand, E. Y., Patterson, N., Reich, D. & Slatkin, M. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239–2252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pease, J. B. & Hahn, M. W. Detection and polarization of introgression in a five-taxon phylogeny. Syst. Biol. 64, 651–662 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Węcek, K. et al. Complex admixture preceded and followed the extinction of wisent in the wild. Mol. Biol. Evol. 34, 598–612 (2017).

    PubMed  Google Scholar 

  24. Dannemann, M., Andrés, A. M. & Kelso, J. Introgression of Neandertal- and Denisovan-like haplotypes contributes to adaptive variation in human toll-like receptors. Am. J. Hum. Genet. 98, 22–33 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Racimo, F., Sankararaman, S., Nielsen, R. & Huerta-Sánchez, E. Evidence for archaic adaptive introgression in humans. Nat. Rev. Genet. 16, 359–371 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huerta-Sánchez, E. et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512, 194–197 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Miao, B., Wang, Z. & Li, Y. Genomic analysis reveals hypoxia adaptation in the Tibetan mastiff by introgression of the gray wolf from the Tibetan plateau. Mol. Biol. Evol. 34, 734–743 (2017).

    CAS  PubMed  Google Scholar 

  28. Sankararaman, S., Mallick, S., Patterson, N. & Reich, D. The combined landscape of Denisovan and Neanderthal ancestry in present-day humans. Curr. Biol. 26, 1241–1247 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lohse, K. & Frantz, L. A. F. Neandertal admixture in Eurasia confirmed by maximum-likelihood analysis of three genomes. Genetics 196, 1241–1251 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H. & Bustamante, C. D. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 5, e1000695 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fulton, T. L. in Ancient DNA: Methods and Protocols Vol. 840 (eds. Shapiro, B. & Hofreiter, M.) 1–11 (Springer, New York, NY, 2012).

  33. Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dabney, J., Meyer, M. & Pääbo, S. Ancient DNA damage. Cold Spring Harb. Perspect. Biol. 5, a012567 (2013).

  35. Gansauge, M.-T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8, 737–748 (2013).

    Article  PubMed  Google Scholar 

  36. Li, B., Zhang, G., Willerslev, E., Wang, J. & Wang, J. Genomic data from the polar bear (Ursus maritimus). GigaScience http://gigadb.org/dataset/100008 (2011).

  37. Ginolhac, A., Rasmussen, M., Gilbert, M. T. P., Willerslev, E. & Orlando, L. mapDamage: testing for damage patterns in ancient DNA sequences. Bioinformatics 27, 2153–2155 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).

    Article  PubMed  Google Scholar 

  39. Fortes, G. G. & Paijmans, J. L. A. in Whole Genome Amplification (ed. Kroneis, T.) 179–195 (Humana, New York, NY, 2015).

  40. St John, J. SeqPrepv1.1 (2013); https://github.com/jstjon/SeqPrep

  41. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

  42. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  43. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McKenna, A. et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

  45. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

  46. Miller, M. A., Pfeiffer, W. & Schwartz, T. in 2010 Gateway Computing Environments Workshop (GCE) 1–8 (IEEE, 2010); https://doi.org/10.1109/GCE.2010.5676129

  47. Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in population genetics. Genetics 162, 2025–2035 (2002).

    PubMed  PubMed Central  Google Scholar 

  48. Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stajich, J. E. et al. The Bioperl toolkit: Perl modules for the life sciences. Genome Res. 12, 1611–1618 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2014); http://www.r-project.org/

Download references

Acknowledgements

This work was funded by European Research Council (ERC) consolidator grant ‘gene flow’ 310763 to M.H. G.G.F. and R.P. were supported by ERC starting grant 263441 to R.P. A.G.-d’A. and A.G.-V. were supported by research project CGL2014-57209-P of the Spanish Ministry of Economy and Competitiveness to A.G.-d’A. J.A.C. and B.S. were supported by a grant from the Gordon and Betty Moore Foundation (GBMF-3804) and NSF ARC-1417036 to B.S. U.S. was supported by grant IUT20-32 from the Estonian Ministry of Education and Research, and P.A. by the Estonian Science Foundation DoRa programme. We thank the regional governments of Asturias and Castilla y León, in Spain, for providing tissue samples of Cantabrian bears. The authors would like to acknowledge support from Science for Life Laboratory, the National Genomics Infrastructure (NGI), Sweden, the Knut and Alice Wallenberg Foundation and UPPMAX for providing assistance in massively parallel DNA sequencing and computational infrastructure.

Author information

Authors and Affiliations

Authors

Contributions

A.B. and M.H. conceived the study; A.B., G.X., G.G.F., L.D. and P.A. performed laboratory work; A.B., J.A.C., S.H., C.T. and J.L.A.P. performed data analysis; A.B., J.A.C., S.H., C.T., J.L.A.P., G.X., G.B., R.P., L.D., B.S., M.S. and M.H. interpreted the results; A.B., J.A.C., S.H., C.T., J.L.A.P., B.S., M.S. and M.H. provided theoretical discussion of methodological developments; M.H., B.S. and M.S. supervised work carried out in their respective research groups; A.B., J.A.C. and M.H. wrote the manuscript; G.R., C.F., A.G.-d’A., A.G.-V., M.M., U.S., P.A., T.S., B.G., G.B.-O. and R.P. selected samples; G.B. contributed data; M.H., R.P., B.S. and A.G.-d’A. obtained funding. All authors read, gave comments and helped to revise the final version of the manuscript.

Corresponding author

Correspondence to Axel Barlow.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Tables and Figures

Supplementary information, figures and tables

Reporting Summary

Supplementary Data 1

D statistic tests for unequal allele sharing between two brown or polar bears and a cave bear candidate introgressor

Supplementary Data 2

D statistic tests for unequal allele sharing between two cave bears and a polar bear or brown bear candidate introgressor

Supplementary Data 3

D statistic tests inconsistent with the species tree as a measure of clade differentiation — comparisons within European cave bears and European cave bears relative to the Caucasus cave bear kudarensis

Supplementary Data 4

D statistic tests inconsistent with the species tree as a measure of clade differentiation — comparisons polar bears relative to brown bears, and brown bears relative to polar bears

Supplementary Data 5

f estimates of cave bear ancestry in brown relative polar bears, and among polar bears

Supplementary Data 6

f estimates of brown bear ancestry in European cave bears, relative to the Caucasus cave bear kudarensis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barlow, A., Cahill, J.A., Hartmann, S. et al. Partial genomic survival of cave bears in living brown bears. Nat Ecol Evol 2, 1563–1570 (2018). https://doi.org/10.1038/s41559-018-0654-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0654-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing